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Preface

[he purpose of this thesis was to determine if decision theory would provide a
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lie concepts of Iccision theory.
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Abstract

The applicability of using a decision theory approach towards reasoning in

expert systems is presented. Particular emphasis is placed on the management of

uncertainty and how it can be consistently factored into decision making. Using a

PC-based Scheme program as a decision-analytic reasoner, and a QuattroTM gener-

ated file composed of user provided likelihoods as the knowledge base, this capability

is demonstralted using an anomalous condition on board the GPS satellite as the test

scenario. The model, using Jeffrey's Rule as a manner of manipulating uncertainty,

is able to effectively capture GPS system kaiowledge probabilistically in a manner

that matches expectations of the experts as well as coincides with the GPS Orbital

Operations Handbook. How rules are represented in this type of system is discussed
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DECISION-ANALYTIC APPROACH TO

RULE-BASED EXPERT SYSTEM DEVELOPMENT

USING GPS AS THE MODEL

I. Introduction

1.1 Background

In the realm of satellite operations, sound and accurate decision making can

mean the difference between saving a troubled vehicle or losing it. The recent loss

of the Soviet Phobos satellite due to operator error attests to this fact (9:31). As

it presently stands, satellite anomaly resolution is a dynamic and often probabilistic

process which requires posterior analysis of the available telemetry evidence (E,) to

determine hypotheses (Hi) of the anomaly's cause (8:11). Based on the expected

utilit, of a particular action, a decision is made. Presently this process is performed

in a heuristic manner based upon an expert's examination of the given data as well

as his beliefs as to what caused the problem. This ability to competently analyze

and rectify satellite anomalies is gained from years of hands on experience. As the

number of satellites continues to grow, the luxury of this lengthy learning process

will disappear.

Because the Global Positioning System (GPS) satellite program is the first

such operated by the Air Force, questions have been raised as to how the knowledge

base of expertise is going to grow as satellite operators are transferred into and out

of the unit. Rule-based expert systems are looked to as a way to capture the growing

body of knowledge and expertise. Research by Knue (1986) and Rampino (1987)

shows this indeed is a practical and likely option for the Air Force to pursue.
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Expert systems are knowledge-based computer programs which behave like ex-

perts in chosen domains of application (2:314). They provide a practical means of

bilding automated experts in areas where job excellence requires consistent reason-

iiig and rewards practical experience (29:963). They have proven themselves to be

quite beneficial in areas such as medical diagnosis, and geological exploration. II

particular, MYCIN, which is used as a consultant to medical personnel, has success-

fully recommended actions which parallel those of other medical experts (4:589-596).

Table 1.1 outlines the different areas rule-based technology has been successfully ap-

plied.

Table 1.1. Rule-Based System Applications

Problem System Functions
Equipment maintenance Diagnose faults and recommend repairs
Component selection Elicit requirements and match parts

catalog
Computer operation Analyze requirements; select and

operate software
Product configuration Elicit preferences and identify parts

that satisfy constraints
Troubleshooting Analyze situation, suggest treatments.,

and prescribe preventative measures
Process control Spot problematic data and remedy

irregularities
Quality assurance Assess task, propose practices, and

enforce requirements

Most expert systems are built upon a series of conditional rules which govern

how knowledge is represented and managed. These rules are written in a "If A then

B" format. This means that if condition A is true, then conclude B. However, incon-

sistencies arise when the various systems try to represent incomplete or uncertain

knowledge. In MYCIN, an example of this uncertain knowledge would be written

into a rule as follows:
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IF:

1) The gram stain of the organism is gramneg, and

2) The morphology of the organism is rod, and

3) The aerobicity of the organism is anaerobic

Then: There is suggestive evidence (.6) that the identity of the organism is
bactroides (4:71).

How this uncertainty is managed and how rules are combined in order to rec-

urnmend particular courses of action varies from system to system. This thesis will

examine a decision-analytic approach towards managing uncertainty in expert svs-

tems.

1.2 Problem Statement

The purpose of this thesis is to demonstrate the applicability of using a Bayesian

decision-analytic approach to handle uncertainty and utility in expert system devel-

opment. The research will focus specifically on how this approach can be used to

diagnose anomalous conditions aboard GPS satellites.

I.3 Scope

The scope of this thesis will determine if the GPS contingency procedures

and system knowledge can adequately be represented in a decision-analytic format.

Particular emphasis will concern the incorporation and management of second-order

uncertainty and its effects on anomaly resolution. The thesis is structured as follows.

Chapter II is a literature review which examines uncertainty representation in expert

sytems. Reasons why decision theory is a viable option will be discussed. Chapter III

will outline the methodology and the steps needed to fulfill the research objective.

Chapter IV gives background data as to why the GPS program was selected and

what successful application of the model in the satellite operations domain could

mean. Chapter V discusses the assumptions the decision-analytic model is based on

and how it differs from other rule bases in its representation of knowledge. Chapter
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VI explains how to apply the method to problems in general while Chapter VII

will apply the model to a particular GPS problem . Chapter VIII will summarize

conclusions based on results of Chapter VII, and give recommendations as to the

overall viability of this approach towards knowledge representation in rule-based

expert systems in general.
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II. Literature Review

2.1 Introduction

A major point of contention among leaders in the Artificial Intelligence (AL)

community is how uncertainty should be expressed and managed in expert systems.

There are four major schools of thought, each with differing views concerning uncer-

tarn reasoning. These areas are classic probability or Bayesian reasoning, Zadeh's

fuzzy set theory, Shortliffe's certainty factors, and Dempster-Shafer's upper and lower

probabilities (16:2). The goal of the literature review is to examine the competing

strategies in handling uncertainty in expert systems. A brief overview of how rea-

soning is accomplished is given and then the general theory of each nieiiod lougy

is outlined as well as its relative strengths and criticisms. Because this thesis will

focus on a decision-analytic approach to expert system reasoninr, this method is also

reviewed and its suitability to the stated objective is given.

2.2 Reasoning Under Uncertainty

The presence of uncertainty in :eazoning systems is caused by a variety of

sources: the reliability of the information, the inherent imprecision of the repre-

sentation language in which the information is conveyed, the incompleteness of the

information, and the aggregation or summarization of information from multiple

sources (29:854). How to represent this quality of belief is an ever-present problem

in the reasoning process of expert systems; a problem that has yet to be solved in a

universally accepted manner.

In logical systems, reasoning is performed in two manners-modus ponens and

modus tollens. Considering two propositions p and q and assuming the implication

p ==:> q to be true, modus ponens allows the deduction of truth of q from the truth

of p (see Figure 2.1). Conversely, modus tollens allows the deduction of falsity of
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p from the falsity of q. These statements assume that the propositions are either

true or false. This exactness is lost when dealing with uncertainty concerning the

propositions. Consequently, given a proposition p and/or an implication p == q

whose truth cannot be established definitively, (i.e., some other value besides 0 or 1)

what can be said about q? (11:5)

Modus Ponens Modus Tollens

p ==* q p ==* q

p -,q

q -1p

Figure 2.1. Logic Reasoning

In situations like these, where knowledge is not definitive, uncertainty must

be introduced in a manner that is consistent, consistent in the sense that the logic

used propogates throughout the system in a coherent manner. The different schemes

previously mentioned are methods which propose how expert systems should deal

with this uncertainty.
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2.3 Probability Theory

In his paper, -The Probability Approach to the Treatment of Uncertainty in

Artificial Intelligence and Expert Systems," Lindley points to the inevitability and

practicality of using probability in reference to uncertain events. With its sound

theoretic basis, Lindley convincingly argues that probability theory is the only way

to adequately discuss uncertainty (19:17-20). Henrion reiterates this position and

notes that probability theory can be derived from a set of simple axioms governing

rational decision-making under uncertainty. It is these axioms which form the basis

of decision theory (12:2).

As it applies to reasoning in expert systems, probability offers definitive ad-

vantages over non-probabilistic measures of uncertainty. First, it provides a sound

theory for using computed uncertainties in decision making. Second, it provides

an operational definition for the likelihood (probability) of an event in terms of a

person's behavior. Third, probabilistic schemes provide well-known ways of incor-

porating empirical data. And fourth, "there are well-developed methods for evalu-

ating judged or computed probabilities by comparison with empirical frequencies, in

terms of accuracy, resolution and calibration" (12:2). No non-probabilistic measures

of uncertainty offer these advantages. Lindley, who generalized a scoring system to

determine how good of an assessment different uncertainty methods are, points out

that none do better than probability (19:27) (20:18).

2.3.1 Concepts of Probability The application of probability theory requires

the prescription or the determination of some probability distribution over a set of

objects (11:3). Each object is assigned a value between 0 and 1 such that for each

object i the sum of the probability of i (Pi) would equal one (_ Pi = 1). Bayes'

theorem, which was developed by the Reverend Thomas Bayes, is the cornerstone

upon which the foundation of probability reasoning rests. The theorem provides a

method in which different probabilities can be combined in a consistent and coherent
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manner.

According to a Bayesian, probability measures a person's degree of belief in a

particular event or proposition, given the information currently known to that per-

son. Mathematically, the theorem states that if A and B are two events, and that

the P(A) is not zero, P(BIA) = P(AlB)*P(B)/P(A). (This is read as the probability

of event B given event A is known.) Knue points out that there are only a few

expert systems which strictly utilize sound Bayesian probability theory in their rea-

soning (10:3). This is surprising considering that Henrion claims that anyone who

violates the law of probability and acts on incoherent probabilities, is liable to suffer

demonstrable loss (7:2). Lindley's explanation of the "Dutch Book" demonstrates

the necessity of having such a coherent theory (12:51).

2.3.2 Criticisms of Probability There are several criticisms against using

Bayesian probability theory in expert systems. Below are the major ones as pointed

out by Henrion (12), Goicoechea et al. (10), and Grnothuizen (11):

(1) The rule rcquires all the hypotheses to be disjoint and, in a large expert

system, dividing the solution space into mutually exclusive subsets may be expensive;

(10:560)

(2) A large amount of statistical data is needed in the form of all P(ej1h,);

(11:3)

(3) In the event of altering the probability of an event in the system (by adding

or removing hypotheses) all the probabilities would need to be recalculated; (10:560)

(4) There is no parameter that insures the set of probabilities built into an

expert system is consistent and coherent; for example, the product P(AIB)P(B) may

or may not be equal to P(BIA)P(A);(10:560)

(5) In realistic situations evidentiary information can quickly translate into

very long sums and products of conditional and marginal distributions requiring

substantial storage and computing resources;(10:560)
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(6) Ignorance, vagueness, or second-order uncertainty cannot be represented:

12:4)

(7) In this approach: P(not h, I e,) = 1 - P(h, I el), that is evidence supports

both h, and (not h,), although not to the same degree. This is intuitively very

peculiar (i.e., this not how humans think); (11:3)

(8) It is difficult to combine evidence if it is not independent. Even then, it is

not necessarily true that more evidence always gives more belief in a conclusion as

probability theory tells us. (11:3)

2.4 Dempster-Shafer Theory of Evidence (Belief Theory)

The Dempster-Shafer theory of evidence (Dempster, 1967; Shafer 1976) is basi-

cally a set-theoretic generalization of Bayesian Theory (10:560). It involves establish-

ing upper and lower probabilities which bound the subjective Bayesian probability

for a particular hypothesis (16:23). Knue reports that this bounding gives some

flexibility to inferences made in expert systems which use this technique (16:23). As

noted by Gordon and Shortliffe (1984) the advantage of Dempster-Shafer theory over

other approaches in handling uncertainty is its ability to model the narrowing of the

hypothesis set with the accumulation of evidence (4:272). Shortliffe believes this pro-

cess characterizes diagnostic reasoning in medicine and expert reasoning in general.

Shafer's Belief theory has received considerable attention in recent years because it

has a sound theoretical basis, it subsumes Bayesian theory, it is able to represent

ignorance, and it allows beliefs from several sources to be treated symmetrically and

pooled together (18:238).

2.4.1 Concepts of Dempster-Shafer. Dempster-Shafer theory is based upon

a concept known as belief functions. A hypothesis is given a number in the range

of [0,1] to indicate belief in the hypothesis given some evidence (4:275). "For every

piece of evidence, a basic probability function (bpf) m: P(O) -> [0,1] is defined such

2-5



that m [0] = 0 and F m[A] = 1" (11:9). 0 represents the set of all hypotheses and

P(O) is the power set of O which is summed over all subsets, A, of E. m[A] measures

that portion of the total belief committed precisely to A. Unlike probability theory,

mf.T] 5 1 - m[A]. (The belief and the disbelief do not necessarily have to sum to

one). The total belief in A is measured by the belief function Bel: Bel [A] - m[B]

11:9-10). After combining different evidences, a belief interval is defined which

represents the strength of belief and disbelief in a hypothesis. See Groothuizen (11)

or Knue (16) for further explanation on how evidence is combined and managed in

expert systems.

2.4.2 Criticisms of Dempster-Shafer. There are several criticisms against

Dempster-Shafer belief functions. Goicoechea et al. (10) and Groothuizen (11)

point out some problems with the theory that need to be addressed in greater detail:

(1) Computation of combined bpf's is very time consuming; consequently in

realistic cases a long chain of inferences may make the theory very inconvenient and

expensive to use because of the increasing complexity in the structure of the core of

the belief functions; (11:10)

(2) The definition of these combined bpf's indicates some kind of assumed

independence; (11:10)

(3) Dempster's rule of combination cannot be applied in situations where there

are considerable disagreements among the evidence, that is, when cores of two belief

functions are disjoint (i.e., contradictory); (10:560)

(4) The numerical stability of the theory needs to be analyzed further; in

some cases, small variations in the basic probability assignments can produce a large

variation in the results. (10:560)
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2.5 Fuzzy Set Theory (Necessity and Possibility Theory)

Fuzzy set theory, which was developed by Zadeh (1965), is another attempt to

quantify uncertainty and imprecision in expert system reasoning. Fuzzy reasoning,

which introduces the notions of necessity and possibility, looks at the world as not

only being black and white, but as a continuum of grey (11:12).

Fuzzy sets differ from the classically defined set where a member can either be

in the set or out of it, but not both. A fuzzy set is a class of objects which hzve

various grades of membership in that set (16:17). The degree of membership is always

a real number between 0 and 1, and it measures the extent to which an element is

in a fuzzy set. In ordinary set-theoretic terms, the degree of membership measures

the plausibility of an element being in a particular set (28:5). Consequently fuzzy

sets are not mutually exclusive or exhaustive (16:17). If an element's membership is

restricted to either 1 or 0, fuzzy sets reduce to normal sets. As a result, normal set

theory is a special case of fuzzy set theory. A detailed analysis for defining fuzzy set

membership functions can be found in Zimmerman (33) and Schmuker (28).

2.5.1 Concepts of Fuzzy Set Theory. Fuzzy set theory was developed in order

to capture the vagueness inherent in some linguistic terms. This vagueness is evident

when you try to quantify concepts like hot or cold, where hot in the context of weather

is different than hot when used to describe a fusion reactor. Groothuizen (11) gives

a good example using the word tall. The statement "John is tall" can be represented

by: length (John) E A where length is known exactly and A is a fuzzy set, e.g.,

0 if x < 170cm
uA(x) = 1 if X > 190crn

o2or7-0 otherwise

Goicoechea et al. point out that there have been a number of applications of

fuzzy logic to expert systems, including SP II and Reveal (10:560).
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2.5.2 Criticisms of Fuzzy Set Theory. Below are some criticisms against Lis-

ing fuzzy set theory in expert systems:

(1) The maximum and minimum rules for disjunction and conjunction may

cancel valuable information when fuzzy individual assignments to various pieces of

e'vidence include one assignment that is very close to zero; (10:560,)

2) Membership functions are context-sensitive; for example, a "small" buildin:g

can be bigger than a -big" house; generic membership functions, if applied blindly.

Can lead to misleading results; (10:560)

3) Computational and storage requirements can be large whenever individ-

,,al membership functions are non-linear or non-trivial; discrete representation of

fun:ctions is expensive: (10:560)

(4) Behavioral studies are lacking that would shed some light into the task of

knowledge representation via membership functions by the user. (10:560)

2.6 .\IY(CI. ('ertainty Factors (Confirmation Theory)

('ertainty factors, which were developed to manage uncertainty in MYCIN.

the medical consultant rule-based expert system, are the most popular of all the

in-probabilistic techniques. Initially based on Bayes' Theorem, certainty factors

were developed after the Bayesian method for updating evidence was considered

inadequate. Buchanan and Shortliffe (4) give a thorough explanation of how and

why certainty factors were decided upon and developed.

The basic principles behind certainty factors are the measurements of 'belieF'

and -disbelief" of a particular hypothesis. Based upon Shortliffe's rules of combina-

tion, a number is reached which embodies the total belief in a particular hypothesis

given all known evidence. Knue (16) does a good job of explaining the rules of com-

bination for certainty factors as well as discussing some of its applications. Below is

it guick overview of the system as presented by Goicoecea et a!.
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2.6.1 Concepts of Certainty Factors. MYCIN's theoretical framework in-

cludes terminology such as "measure of belief", denoted MB, "measure of disbelief',

denoted MD, aad "certainty factors", CF. Formally these are defined as: MB(H.E)

is the measure of the belief in the hypothesis H, given evidence E; MD(H.E) is

the measure of disbelief in the hypothesis H, given evidence E, and CF(H.E) =

\IB HE) - MD(H.E).

Since \IB(HE) is a number between 0 and 1, and MD(HE) is also a number

bYtweev 0 and 1. the cert-.inty factor CF(H,E) is a number between -t and +I. .A

positive CF indicates there is more reason to believe a hypothesis than disbelief it. A

riegative CF indicates that a hypothesis should be rejected more than confirmed. A

('F of 0 is a "'don't know" value which indicates that the hypothesis is independent of

the evidence or equally supported (MB) and disconfirmed (MD)(10:561). Measures

of belief are incorporated into the rules of the knowledge base and are used to

propogate evidence towards a hypothesis. Though originally developed with medical

dlidgnosis in mind, there are several non-medical expert systems which use certainty

factors as the means of representing uncertainty.

2.6.2 Critcisms of Certainty Factors. The following are some criticisms against

certainty factors:

1) The definitions for combining the rules are rather arbitrary. Consequentl,

in some instances, results match an expert's intuitive feeling and in other cases,

unexpected and unwanted results are yielded; (11:9)

(2) Combining rules assurrs independence of the evidences; (11:9)

(3) It is does not have a strong theoretic basis; (10:562)

(4) The semantics of the CF, i.e., the interpretation of the number (ratio of

probability, combination of utility values and probability);(29:857)

(5) Inability to distinguish btween ignorance and conflict, both which are

represented by a zero CF. (29:857)
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lihis concludes the overview of some of the competing methodologies which

profess to being able to represent uncertainty reasoning in expert systems. Because

of the brevity devoted to each method, the referenced articles should be consulted

for a more thorough understanding of particular concepts.

2.7 Decision-Theoretic Approach (Decision Theory)

As discussed by Hollenga and Morlan in their paper, "A Decision-Theoretic

Model for Constructing Expert Systems," expert systems should use decision anal-

vsis as the methodology for dealing with uncertainty because of its sound theoretic

base (13:2). Composed from the axioms of probability and utility, decision theory

provides a framework for coherent assignment of beliefs with incomplete information

(probability), while introducing a set of principles for consistency among preferences

and decisions (utility).

2.7.1 Overview. The following paragraphs will summarize why a decision-

analytic approach offers more than the previously listed alternatives for representing

knowledge in expert systems. The strengths of probability and utility theory are

briefly reviewed, and how the synergistic combination of the two in decision theory

is both a viable method of reasoning and an accurate measure of uncertainty. Lastly

the suitability of the approach for representing knowledge about the GPS satellite

program is discussed.

2.7.1.1 Wly Decision Theory uses Probability for Representating Un-

certainty. There are a number of reasons why decision theory uses probability as

its representation of uncertainty. Below is a list as presented by Horvitz et al. of

fundamental properties that are considered intuitively desireable for measuring belief

in the truth of a proposition.
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1. Clarity: Propositions should be well defined.

2. Scalar continuity: A single real number is both necessary and sufficient for

representing a degree of belief in a proposition.

:3. Completeness: A degree of belief can be assigned to any well-defined proposi-

tion.

4. Context dependency: The belief assigned to a proposition can depend on the

belief in other propositions.

5. Hypothetical conditioning: There exists some function that allows the belief

in a conjunction or propositions, B(X A Y), to be calculated from the belief

in one proposition and the belief in the other proposition given that the first

proposition is true. That is, B(X A Y) = f[B(XIY), B(Y)I.

6. Complementarity: The belief in the negation of a proposition is a monotoni-

cally decreasing function of the belief in the proposition itself.

7. Consistency: There will be equal belief in propositions that are logically equiv-

alent.

Researchers have demonstrated that, taken together, these properties logically

imply that the measure of belief must satisfy the axioms of probability theory."... If

one accepts these intuitive properties as desirable, one must then accept probabilities

as a desirable measure of belief."(14:5) It is for these reasons Lindley (19) argues

that probability is the only satisfactory description of uncertainty.

Using these properties as a gold standard, alternative methods for representing

uncertainty can be judged in terms of which of the principles they reject. For exam-

ple, Dempster-Shafer theory rejects the property of completeness. denying that it is

possible to assign a belief to any well-defined proposition. Fuzzy-set theory rejects

clarity, allowing linguistic imprecision in the definition of propositions. Certainty

factors violate consistency, while other methods reject scalar continuity, arguing

that a single number is insufficently rich to represent belief (14:5).
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Concerning the critics of probabilistic methods in expert systems, who nonethe-

less want a numerical measure that reflects the state of a system's knowledge about,

or attitude toward, a proposition's status, two problems arise. First, if they are not

measuring probability, what are they measuring? It is not enough to associate a

word ("confidence," "certainty," "degree of belief," "degree of confirmation," etc.)

and hope that semantically it expresses the user's underlying intent. There is a

well-developed theory of statistics, with interpretations for the precise meaning of

"'probability" as well as proven calculi which govern its use. Any competing theory

will have to present the same thing: not merely a name, but a clear analysis of

what is being measured, how it is different from a probability, why people should

nonetheless be interested in it, and how people can feel certain that computations

used to derive the numbers in fact compute anything worth value. To date, most of

the work in these directions remains suggestive rather than persuasive (29:846).

2.7.1.2 Utility Theory Provides a Rational Framework for Reasoning.

Utility theory is based on a set of simple axioms or rules concerning choices under

uncertainty. Just like the axioms of probability theory, they are fairly intuitive.

These axioms provide a model of how a rational man makes his decisions when faced

with uncertainty. For the purpose of decision theory, the most important thing to

note is that the axioms of coherence imply that a person should make decisions in

such a manner as to maximize the expected utility (EU). If one accepts the axioms

of coherence, he must accept the EU criterion, because it follows logically from the

axioms.

The following is a brief summarization of the axioms of coherence, as presented

by Winkler (32). See Winkler for further details or clarification.

Axiom 1: Given any two payoffs R1 and R2, you can decide whether you prefer

RI to R2, R2 to R1, or you can be indifferent between Ri and R2.(orderabi!ity)
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Axiom 2: If you prefer payoff Ri to R2 and you prefer R2 to R3. then you

must prefer RI to R3 (transivity of preferences). This is a very important element

in the theory of subjective probability and utility.

Axiom 3: If you prefer RI to R2 and R2 to R3, then you can find some

probability value p, such that a p-mixture of R1 and R3 is preferred to R2; you can

find some other value of p such that R2 is preferred to a p-mixture of RI and R3:

and finally you can find yet another value of p such that you are indifferent bet,;een

R2 and a p-mixture of RI and R3.

Axiom 4: If R1 is preferred to R2 and R" is some other payoff value, then any

p-mixture of R1 and R3 is preferred to the same p-mixture of R2 and R3 (where p

value is the same).

Axiom 5: If you are indifferent between Ri and R2, then they may be sub-

s i ued for each other as payoffs in any decision making problem.

Axiom 6: If RI is preferred to R2, then a p-mixture of Ri and R2 is preferred

to a q-mixture of RI and R2 if and only if p > q.

The six axioms of coherence appear intuitively reasonable and as such should

be adhered to in rational decision making. It seems counterintuitive and illogical to

develop an expert system which does not reason coherently.

2.7.1.3 Sound Recommendations Under Uncertainty. Decision theory

does not claim to provide a Aescription of how people actually behave when reason-

ing under uncertainty, but how they shuuld. Horvitz et al. refer to studies which

have demonstrated that people frequently do not behave in accordance with deci-

sion theory. In fact, characteristic (and often costly) biases exhibited in intuitive

judgement are part of the justification for applying decision theory to assist peo-

ple in making decisions. While much can be done to determine the probabilities.

structure the values, and assess the alternatives, bad outcomes still can result from

rational choices. Alternatively, a random or poor selection, may turn out to be quite
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fortuitous. Such is the nature of acting under incomplete information. Nonetheless.

decision theory strives for good decisions that lead to better outcomes on average

(14:9).

2.7.2 Suitability of GPS. Though opponents argue the inadequacy of the

c.*-cizcn-al.diyti,. methud be,.,, se they fee' it rcquires too much prior i;formatinn (A

criticism levied at all probability-based systems), it appears that the GPS satellite

program provides a suitable environment in which this information can be ascer-

tained. As for disagreements with the chosen methodology, Henrion (12) effectively

argues that several of the criticisms levied against probabilistic reasoning in ex-

pert systems are unwarranted and untrue. In particular, he references the work of

Cheeseman (1985) and Spiegelhalter (1986) who show that ignorance, vagueness, and

second-order uncertainty can be represented in a sound probabilistic manner (12:5).

Pearl's (24) Bayesian networks demonstrate that probabilistic representations of in-

formation do not require the massive amounts of data that many claim. Snow's (30)

work reiterates this point. As for criticisms concerning the intractability of the the-

ory, Kim and Pearl's method for propagating uncertain evidence through a Bayes'

network show that it is not necessary to recalculate all probabilities as new infor-

mation is acquired-only those probabilities directly related to the new information

(12:3).

Concerning complaints associated with knowledge acquisition, it appears as if

the GPS satellite's extensive historical database make computing prior probabilities

a statistical problem while utility assessments can be provided by expert opinion. As

for its applicability to expert system reasoning, Breese and Fehling point out that in

situations where the cost of an error is important, probabilistic reasoning founded

upon decision theory is the preferred method of uncertainty reasoning (3:33). Kala-

gananam and Henrion (15), using motorcycle repair as the model, have demonstrated

the advantages of using a decision-analytic approach versus a heuristic approach for

sequential diagnosis. Edmond's (8) study concerning satellite anomaly resolution

2-14



also confirms this point, while Spiegelhalter (31) has also shown the utility of this

approach in medical diagnosis.

As for the difficulty of generating rules which capture this methodology, Hol-

lenga's (13) proposed method of developing rules from a decision analytic action

diagram appears promising and warrants further study.

Overaii, the d LsiULh-t o etic approa-ih, unlike many alternative lormalisms

of uncertainty, provides a coherent prescription for choosing actions and meaningful

guarantees of the quality of these choices (29:55).

2.8 Summary

This literature review has given some background on what the principle method-

ologies are for dealing with uncertainty in expert systems. Though this list is by no

means exhaustive, Bayesian probability, Demster-Shafter belief functions, Certainty

Factors, and Fuzzy Set Theory represent a few of the more prominent theories. Al-

though successful in limited applications, each method still has criticism as to its

overall effectiveness in varied fields.

In the section concerning the decision theoretic approach to handling uncer-

tainty, several points were made that confirmed decision an1iy9;s is a valid approach

to uncertainty reasoning in expert systems. For one, the decisions made by this

probabilistic method can be communicated in intuitively meaningful terms. Two,

the assumptions leading to these decisions can be traced back with ease and clar-

ity. And three, the ability to assess the utility of certain decisions, represents value

judgements about the preference and desirability of actions in the context of their

perceived worth (29:56). Though not above reproach, decision theory can nonethe-

less rectify the shortcomings of other uncertainty methods by providing a set of well

founded principles (3:36). The next chapter will discuss the methodology used in

this thesis.
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III. Methodology

3. 1 Introduction

This chapter outlines the methodology used in the thesis. Decision theory

is the framework of the research with particular emphasis on subjective Bayesian

Reasoning. if unfamiliar with the major concepts of decision theory or Bayesiaii

reasoning, the following references give adequate presentations of major concepts

these theories entail. See Horvitz et al.(14), Sharpiro (29), and Winkler (32).

The following paragraphs address the approach needed for satisfying the sub-

objectives of the thesis. It is the framework of these sub-objectives that form the

scope of this thesis. Consequently, in order to determine the feasibility of using a

decision-analytic approach in developing rule-based expert systems, each area will

be examined. The addressed areas are as follows:

1. The suitability of the decision-analytic approach;

2. The present methodology behind GPS anomaly resolution;

3. The formulation of the needed probabilities from the historical satellite data;

and

4. The generation of rules which capture GPS knowledge for preliminary expert

system prototype. A discussion and summary of the results is also necessary.

3.2 Applicability of the Approach

Because Bayesian theory is based upon fundamental coherent mathematical

concepts, this thesis will determine if it offers a sound basis upon which an expert

system can be developed. This will involve examining how the various probabil-

ity and conditional relationships are developed and how they interact. This will

also involve determing if the system knowledge can be adequately expressed in a

probabilistic manner.
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Certain assumptions are needed in order for Bayesian reasoning to be useful,

therefore it will be determined if this particular type of problem meets those criteria

and what are the system limitations.

3.3 Anomaly Resolution

Presently GPS anomaly resolution is accomplished in two phases-each with

several steps. Upon noticing anomalous telemetry, phase one is for the operator (usu-

ally not an expert) to infer what class of problem he potentially faces based upon

the anomalous telemetry. This leads to a checklist which, written as a flowchart.

guides the operator to an action which will either remedy the problem or put the

vehicle in a safe configuration. If it is necessary to "safe" the vehicle, phase two is

for an expert to review the evidence (telemetry) prior to the anomaly, decide what

went wrong, and based upon the subjective utility of a particular action, decide what

should be done. This is a heuristic process which relies upon the expert's ability to

reason with incomplete or uncertain data and reach a decision which maximizes the

utility for the satellite and the user. For this research, interviews with GPS subsys-

tem engineers were conducted in order to understand what processes are involved in

making decisions which govern the well- being of the satellite. This helped define the

reasoning process that the expert system should follow and also in ascertaining the

utility value of selected actions. A review of the vehicle subsystem technical manuals

as well as contingency procedures also provided needed background knowledge.

3.4 Data Generation

Based upon archived data of a satellite's history, the actual prior probabilities

needed in Bayesian analysis were computed. Expert opinion as well as past trends

allowed accurate probabilities of particular anomalies and their interrelationships to

be determined. This facet of the research was crucial to the overall success of the

project. Interviews with GPS vehicle engineers as well as a review of statistical data
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collection methods were required in order to validate results.

3.5 Rule Base Development

A small decision-analytic reasoner, which combines information in a Bayesian

manner. was developed and a basic example using data obtained from GPS engineers

was coded. This facilitated testing and validating the approach. It also helped

in determining the utility of this approach in representing system knowledge and

handling uncertainty in expert systems of this type.

3.6 Summary

Throughout this thesis project, an effort was made to bridge the gap between

decision theory and expert system development. With satellite fault diagnosis as

the chosen domain of application, this thesis hopes to show that these areas can be

merged in a practical and useful manner.
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IV. Global Positioning System (GPS)

4.1 Introduction

The purpose of this thesis is to determine if a decision theory approach to

rule-based expert systems is feasible and practical. The Global Positioning System

(GPS) satellite is the system chosen to determine the viability of the approach.

Anomaly classification and present contingency procedures describing GPS satellite

operations are reviewed in order to determine the scope needed by the expert system.

Background knowledge on GPS and its mission, why this satellite program was

singled out, and which subsystem will be examined for rule base development is also

given.

4.2 Anomaly Classifications

As defined in Section 3.0.2 of the GPS Orbital Operations Handbook (OOH)

(27), an anomaly is the improper or unexpected operation, condition, or behavior of

any portion, subsystem, or system of a space vehicle. An anomaly may manifest itself

in an out-of-limits parameter or adverse trending of any parameter, as indicated in

telemetry data; failure of the space vehicle to respond to commanding; off-nominal

attitude or orbit conditions; or non-nominal indications obtained from the GPS

Control Segment or Camp Parks Communications Annex. The various levels of

anomalies are defined as:

1. Level I Anomaly. A Level I anomaly could cause a total loss of mission and

requires an immediate response.

2. Level II Anomaly. A Level II anomaly could cause a total loss of mission but

allows some time to respond.

3. Level III Anomaly. A Level III anomaly could cause a problem less severe than

a total loss of mission and requires an immediate to long-term response.
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4.3 Discussion

The problems considered in this thesis are Level II and III anomalies. The as-

sessment of utility values pertaining to contingency actions concerning the anomaly,

can be weighted in order to examine problems of a higher priority before examining

those of lower priority should instances arise where evidence lends itself to different

problems. However, in the Orbital Operations Handbook (OOH), there is no ex-

plicit utility scale ranking for anomalies except for the Level I, Level II, and Level

III classifications. Within each of these levels there are none. This knowledge is

something that is supposed to be learned as the operator becomes more familiar

with the outcome of certain problems. Likewise, recognizing the boundary between

the different classes starts to blur as time is factored into the problem. Consequently

a Level III problem undetected can manifest itself as a Level II anomaly and so forth.

The heuristic experience that comes from long term program association is the type

needed to be captured in a expert system knowledge base.

Presently, anomalies are resolved using contingency checklists which have enu-

merated most of the foreseeable problems. These checklists are written in a posterior

type manner-hypotheses are concluded based on the evidence observed by the op-

erator. They are rigidly written and appear to allow for no subjective interpretation.

However, this aspect is aided by human judgement as the operator gets more familiar

with the telemetry readings. For example, if the checklist requires that telemetry

point X = 0, and the user knows that 0.1 is essentially zero due to the particu-

lar traits of that vehicle, he considers this value as zero and proceeds. This type

of subjective assessment is what is lacking in many expert systems which, like the

OOH checklists, are written in a rigid form and fail to allow for the belief values to

be coherently incorporated into the knowledge base. As mentioned previously, the

probabilistic representations of uncertainty by decision theory models can be used

to encompass this type of data assessment.
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Presently, anomaly resolution in all but the simplest of cases usually requires

a group decision before major corrective actions are initiated. Due to the nature

of most problems and the inherent reliability of the satellite, usually no important

decisions have to be made in such a short time that the situation cannot be throughly

examined before proceeding. In situations like these, an expert system can be used

to augment the knowledge of the operations crew. Nonetheless, there are problems

which do require immediate action, and the operations crew must be proficient in

performing the necessary tasks. For situations like these, consultation with an expert

system may be inappropriate due to the criticality of time.

4.4 Vihat is GPS

The Navstar GPS is a Air Force operated satellite program whose mission is to

provide highly precise p-sition, velocity, and time information to users around the

world and to detect nuclear detonations (NUDETs). The GPS system is made up of

four system segments: Space Segment, Control Segment, Navigation User Segment.

and NDS User Segment.

4.4.1 Space Segment. The Space Segment, when fully operational, will con-

sist of 21 Block I operational satellites and three active spares placed in six orbital

planes, each having an inclination of 55 degrees. The satellites will operate in circu-

lar 20,200 kilometers (10,900 nautical miles) orbits with a period of 12 hours (6:2).

The satellites will be spaced in such a manner that a minimum of four satellites will

be visible by any user at any time, thereby ensuring worldwide coverage.

The GPS operates on two L-band frequencies: 1575.42 MHz (L1) and 1227.6

MHz (L2). Each satellite is designed to transmit an Li and L2 signal. Li carries a

precision (P code) signal and a coarse/acquisition (C/A code) signal, while L2 carries

the P code only. The use of two frequencies allows the navigation user with a higher

accuracy set to adjust to the variable delay experienced by different signals as they
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pass through the ionosphere. Superimposed on these signals will be navigation data,

the satellite's current ephemeris coordinates (position), state of health information,

and satellite clock bias information.

In the NUDET detection role, each satellite utilizes onboard sensors to detect

nuclear events on or above the earth's surface. A satellite detecting the nuclear

events processes and crosslinks the data to other GPS satellites in radio frequency

iRF) proximity via UHF frequencies. All satellites with the nuclear event data

transmit to the NDS User Segment via the L3 frequency.

4.4.2 Control Segment. The Control Segment includes a number of monitor

stations and ground antennas located throughout the world. The monitor stations

use a GPS receiver to passively track all satellites in view and thus accumulate

ranging data from the satellite signals. The data is also processed to determine

each satellite's precise ephemeris coordinates and the prevailing time registered by

the onboard atomic clock. Detected errors are corrected by transmitting new upload

data to the satellite on a periodic basis. The state-of-health of the satellite subsystem

and payloads are also monitored.

4.4.3 NVavigation User Segment. The Navigation User Segment receives and

processes Li and L2-band navigation data radiated from the Space Segment. The

user passively receives coded signals from four or more satellites in view of his re-

ceiver. The coded signals from three satellites are used to triangulate the user's

velocity and coordinates. Data from the fourth satellite is used to eliminate any

timing errors in the user's set clock.

4.4.4 VDS User Segment. In support of the Nuclear Detonation (NUDET)

Detection System (NDS) mission, the GPS Block II satellite provides the capabil-

ity to transmit Global Burst Detector (GBD) collected NUDET data to NDS User

Segment terminals by direct transmission using the L3 downlink and through trans-
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mission by GPS satellites within RF proximity via the UHF crosslink. NDS users

process these data together along with navigation data to determine the location

and char, cteristics of the nuclear event(s).

4.5 Applications

Because of the versatility and the increased navigational capability it offers,

GPS provides many benefits to both civilian and military operators. Knowledge

of precise three-dimensional position data relative to friendly and enemy forces is

fundamental to the success of a large number of military missions, while increased

commercial traffic in the air and on the sea can utilize this information for increased

safety and efficiency.

4.5.1 Military Applications. The substantial navigation performance improve-

ments afforded by the GPS can enhance many areas of military operations. In air

operations, GPS accuracy can streamline en route and terminal navigation, thereby

reducing flight times and conserving fuel. Because GPS is a three-dimensional sys-

tem, descent and landing operations can be more closely controlled. Combat-related

applications involving bombing and ballistic weapon delivery are also vastly im-

proved. GPS also allow ground forces the capability of enhancing activities such as

site surveying, field artillery placement, and target acquisition and location. Naval

forces also benefit. Harbor entry operations can be improved and activities such as

mine placement can be made more precise and safe. These are but a few of the many

military applications that will benefit from GPS (see Figure 4.1) (6:9).
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Figure 4.1. Military Applications

4.5.2 Civilian Applications. The GPS will provide a broad spectrum of civil

users with accurate position, velocity, and time determination cabability at a rea-

sonable cost. Civil users of air, sea, and ground vehicles will benefit from the GPS

for optimal course navigation, which will reduce fuel costs and transportation time.

Besides providing substantial benefits in air navigation and landing operations, air

search and rescue techniques will also be greatly improved. Mineral exploration.

and accurate positioning of oil exploration are also some other commercial uses of

GPS. There are several potential applications of GPS that will occur as the system

becomes more accepted by the civilian community (see Figure 4.2).
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Figure 4.2. Civilian Applications

4.6 Space Vehicle Subsystems

GPS Block II satellites consist of a integrated assembly of nine subsystems and

two payloads to provide a space-based radio frequency enviroment for the Global

Positioning System.

The space vehicle consists of the following subsystems and payloads:

1. Structure Subsystem (STR)

2. Thermal Control Subsystem (TCS)
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3. Electrical Power Subsystem (EPS)

4. Attitude and Velocity Control Subsystem (AVCS)

5. Orbital Insertion Subsystem (OIS)

6. Reaction Control Subsystem (RCS)

7. Telemetry, Tracking, and Command Subsystem (TT&C)

S. Navigation Payload (NPD)

9. L-Band Subsystem (LBS)

10. Integrated Transfer Subsystem (ITS)

11. Global Burst Detector (GBD)

The AVCS, OIS. and RCS subsystems are elements of the control system (CS).

The ITS and GBD subsystem are part of the Nuclear Detonation (NUDET) Detec-

tion System (NDS) payload (27). See Appendix A for a summary of each subsystem

as given in the GPS Orbital Operations Handbook (OOH) Section 1.0.

4.7 Why GPS?

The Global Positioning System was chosen as the prototype model for ap-

plication of the decision-analytic approach to rule-base development for a number

of reasons. The main reason is that the Air Force is becoming more reliant upon

space-based resources and expert systems will play an increasing role in managing

and maintaining these systems. Without question, GPS is one space resource which

figures to play a very important role in future military operations. Consequently, the

viability of this approach in augmenting decision-making and system control needs

to be examined in the context of its possible uses. Another strong point is that

because the first generation of GPS satellites (Block I) have been in an operational

test phase since 1978, there is a large data base from which system anomalies and

trends can be determined. This provides the information needed to ascertain the

utility of certain actions as well as form the priors and likelihood ratios needed. And

lastly, because a satellite is a complex system, the feasibility of the approach on large

systems can be determined.
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4.8 System Examined

For this study, the Electrical Power Subsystem concerning the loadshed timers

will be the chosen area in which contingency system knowledge will be modeled.

After conferring with Technical Analysts from Lockheed Missile and Space Corp..

the EPS system was chosen because of its importance, and because most of the com-

mon anomalies occur in the EPS. Furthermore, extensive data concerning the EPS

subsystem have been kept which will assist in determining the needed conditional

probabilities of anomalous conditions given telemetry.

4.9 Conclusion

The purpose of this section of the thesis was to give background information

on the GPS satellite system and the reasons it was selected as the model. Anomaly

classifications and contingency procedures were reviewed as well as the applicability

of satellite expertise to expert system technology. The Electrical Power Subsystem

was chosen as the subsystem in which a knowledge base will be developed to test

the viability of the method. The next chapter discusses the assumptions that the

decision-analytic model is be based upon.
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V. Model Description

.5.1 Introduction

This section of the thesis discusses the decision-analytic approach to developing

expert system rules which capture the knowledge of a particular probiem domain.

The framework is that of decision analysis encompassing Bayesian reasoning and

utility theory. The strengths of the methodology are that uncertainty can be incor-

porated into the decision-making process in a consistent manner; the outputs can be

validated and verified; and, given the initial model accurately describes the pioblem

domain, the method is fairly robust. This chapter addresses the assumptions upon

which this system is based, why a system with its capabilities are needed, and the

major differences between this rule base and more traditional ones. Morlan's (22)

in-progress work was used as a guideline for the layout of the initial part of the

chapter.

5.2 Overview

Bayes" theorem is the foundation upon which this approach to rule-based ex-

pert system development is based. Should a review of this theorem and its basic

concepts (i.e., priors, likelihoods, posteriors) be required, Berger (1) or Morgan (21)

are recommended references.

Bayesian analysis represents a method for incorporating available relevant in-

formation directly into the process of making inferences about an underlying state

of nature, and in formulating decisions based on these inferences. Furthermore, it

allows for taking account of subjective belief in the evidence (second-order uncer-

tainty) in arriving at these inferences. As mentioned in the literature review, several

methods of incorporating this uncertainty have been developed, yet few if any do so

in a coherent manner and fewer still use utility as a measure of delineating between
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choices. This approach of managing knowledge in expert systems attempts to oper-

ate in a manner that more closely resembles rational decision-making. In so doing,

the knowledge base, which has probabilistically captured domain-specific knowledge,

coherently manipulates a user's belief about the evidence and recommends the ac-

tion yielding the most utility. However, unlike conventional expert systems, these

recommendations are made from rules which are more analogous to mathematical

functions than --If ... then..." statements. Whether this rational approach toward

uncertainty management can be sucessfully mapped into human reasoning, which is

many times an illogical and incoherent process, remains to be seen.

5.3 Assumptions

These are the assumptions that are used in the application of this method:

1. Hypotheses are assumed to be disjoint when the conditional probability and

conditional utility information is gathered,

2. Second-order uncertainty (uncertainty in the evidence state) is independent

of the hypothesis- to-evidence uncertainty,

3. Actions are assumed to be disjoint,

4. Evidences are not necessarily conditionally independent within a hypothesis

(i.e., P(E1,E21H) might or might not equal P(E1IH)*P(E2[H),

5. Only a relevant subset of the hypotheses needs to be considered.

5.3.1 Disjoint Hypotheses. Assuming disjoint hypotheses is a fairly common

way to decompose problems. It allows for subjective reasoning about uncertainty

by collecting the conditional probability (P[EIH]) of the evidences, E, conditioned

on the hypotheses, H (the likelihoods). That concept is also extended to the utility

information by the conditional utility function, U[AIHI.
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Some of the strong points of this assumption are:

" It provides a natural decomposition of larger problems into smaller more man-

ageable ones;

" It is a logical partition for collecting evidence-to-cause probability relationships;

" It is a logical partition for collecting action-to-cause utility information.

Some of the disadvantages are:

" The requirement to construct a separate hypothesis that represents the joint

occurance of hypotheses that may occur together;

" The requirement to include data on all possible hypotheses. However, this task

is required of any type of expert system that strives to make rational decisions.

5.3.2 Second-Order Uncertainty. Second-order uncertainty is uncertainty con-

cerning the state of the evidence. By using an alternate form of Bayes' Rule, some-

times noted as Jeffrey's Rule, uncertainty can be applied to the evidence in a consis-

tent manner that adheres to the laws of probability yet allows for subjective opinion

to be addressed. Mathematically, Jeffrey's Rule is (7:2)

n

P*(A) =ZP[A I E]P*(E,).

Though apparently sound in its adherence to probability theory, there is still

some disagreement among probablisticians as to its validity or need. Pearl (24) and

Snow (30) have professed differences to Jeffrey's Rule and Morlan (22) is presently

working on a concept which contradicts with Jeffrey's belief in the relationship of

different evidences. Nonetheless, this thesis used Jeffrey's Rule to demonstrate the

concept of modifying the belief in a hypothesis given the uncertainty in the evidence.

See referenced articles for alternate methods of incorporating additional information.
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The following examples demonstrate a objective method toward handling second-

order uncertainty by utilizing Jeffrey's Rule. Example 1: Assume P[HI[ E2] = .7,

P[Hli -E21 = .262. Now, suppose your belief in the evidence (E2) is sixty percent

(i.e.,"-P[E2]" = .6). How can this belief be coherently incorporated in the posterior

of the hypothesis given the evidence? Bayes' (Jeffrey's) Rule allows us a manner in

which we can reassess this belief:

-P[E2]" = .6 therefore "P[-E2]" = .4

P[H1 "P[E2]"] = P[Hl I E2] . "P[E2]" + P[H1I -E2]."P[-E2]"

= (.7)(.6) + (.262)(.4)

= .42+ .1048

= .5248

.. . ...... I...... -..... I..... ..... ...... .. ..... L.....

.7 . .... i..... ..... ........ ..... i..... ..... ...... ..... ........!..... ........ i.... i..... i...... i.....:...... i......
2 ......... ..... . ......

.262
.......... ......... I........... . .....

P[HIIE2] P[H1I-E2]

1 .5 0
I , I I I I I I I I

0 1

Figure 5.1. Jeffrey's Rule 2D Representation

Because of the uncertainty of the evidence, the belief in the hypothesis should

fall somewhere between the extremes of when you are sure of seeing the evidence
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P[H1I E21 and when you are sure you did not see the evidence P[H1I -E21. See

Figure 5.1 for graphical interpretation.

Example 2: Assume

P[HI I El, E21 = .9
P[H1I El, -E2] = .8
P[Hl -E1, E2] = .7
P[H1 -E1, -E2] = .6

Suppose: '-P[E 1]" = .3 and "P[E21" = .2
Therefore: *'P[-E1I" =.7 and "P[-E21" = .8

Then: P[H1I "P[E1]", "P[E2]"] =

-(.9)(.3)(.2) + (.8)(-3)(-8) + (.7)(.7)(.2) + (.6)(.7)(.8)
-. 054 + .192 + .098 + .336
-. 68

P(HI I E2)

P(H1 IEl, -E2)
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This value is between P[HIIE1,E2] = .9 and P[HII-E1,-E2] = .6 just as would be

expected. Figure 5.2 shows the three dimensional representation. This manipulation

of uncertainty will be discussed later in the actual problem application.

5.3.3 Disjoint Actions. The assumption that the actions are disjoint is simi-

lar to the assumption that the hypotheses are disjoint in that, without it, the solution

space would be combinatorially large. Given N actions, a data base allowing all com-

binations would be 2n . For purposes of this thesis, only one action is recommended.

It is understood that this might be unrealistic in terms of real world situations.

5.3.4 Conditional Independence. Most Bayesian problems assume evidences

are conditionally independent. In such a case, the joint probabilities are simply the

individual probabilities multiplied together (i.e., P[E1,E2 IHl] = P[ElIH1]*P[E2 ri]).

Many times this is indeed a valid assumption which helps in combining several pieces

of information. Snow (30:635) points out several ways in which data can be manip-

ulated into satisfying this simplifying assumption. For one, the evidences may be

restated or algebraically transformed so that they are conditionally independent or

it may be possible to combine dependent evidences into one evidence which can be

considered independent across the hypothesis set. All in all, "Performing statisti-

cal inference under the conditional independence restriction is a lot like modeling

physical systems using linear relationships. In both cases, the restrictive assumption

makes the output a simple combination of the responses for each separate input."

(30:635) Nevertheless, in many real world situations there are times when this as-

sumption cannot be made. When situations are encountered where evidences are

dependent given an hypothesis, their relationships must be accurately captured in

the knowledge base if the expert system is going to provide realistic assistance. The

model does allow for the accurate representation and manipulation of dependent

data.
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.5.3.5 Plausible Set. Given a certain problem domain (subset of large system),

heuristics are used to narrow down a set of expected hypotheses which pertain to

the domain in question. If this assumption is not made, the database would become

too large trying to enumerate every possible (no matter how unlikely) state of nature

hypothesis).

This "'pruning" of the hypothesis space, which is a subjective process in itself.

would involve determining which hypotheses are deemed most likely to occur. As in

traditional rule-based systems, this "plausible" set of hypotheses is based upon past

history, similar problems, or educated guesses. However, unlike traditional rule-based

systems, the utility of not considering certain hypotheses must also be factored into

the decision of determining the plausible hypothesis set. Some threshold level must

be decided upon that takes into consideration the likelihood of the hypothesis and

also the expected loss should that hypothesis not be considered. By examining utility

information, hypotheses which might be excluded because of their remoteness might

enter into the plausible set because they are just too "expensive" to not account for

their happening.

5.4 Justification

As mentioned previously in the literature review, there are several reasons why

decision theory is a desirable approach in expert system development. The primary

reason is the ability to coherently handle uncertainty. The following paragraphs ex-

amine the fundamental differences between this type of system and more traditional

ones, and why this approach appears more suitable to real world applications.

As with any knowledge base that attempts to model complex systems, a defini-

tive approach must be used in the formulation of rules. Generally, there are two ways.

one which does not incorporate uncertainty or implication and one which does; the

former being superficial yet functional in ideal situations, the latter being a great

deal more complex yet incorporating a more realistic attitude toward quantifying
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knowledge.

The first approach merely looks at indicators which are believed to be symp-

toms of suspected problems. Much like the belief that a fever is a symptom of some

type of condition (e.g., measles, flu, etc.). This approach accepts the indication (evi-

(lence) of the fever as being true and then proceeds to determine what would cause it

and subsequently how to treat the condition. A rule might be "If patient has a fever

of > 99.3, then prescribe aspirin." No allowance is given for subjective assessment

considering external situations which might effect the strength of the implication or

the user's belief. Most rule-based systems are one dimensional in this respect and

operate accordingly, many, it must be noted, with quite satisfactory results.

The other approach is more complex, looking at each piece of evidence in the

context of the entire situation. Given the same situation of a person having a fever,

this approach would allow subjective questioning of the evidence (i.e., how accurate

is the thermometer? or who took the reading; was it the doctor (expert), or a new

candy striper?). Given a rule base which is formulated in this manner, each piece of

evidence is able to be judged as to its veracity and this interpretation can be used

to determine the fault (anomaly) and subsequent action. Consequently, while the

implied relationship of 99.3 degrees and fever is stored in the data base, your belief

(uncertainty) might waiver anywhere from 1.0 (definite fever) to .2 (most likely not

a fever) to 0.0 definitely not a fever, depending on your assessment of the situation.

This degree of belief could cause your next action to range from prescribing aspirin

to sending the patient home. The advantages of a system which can reason in such

a manner are many, however there are disadvantages; one being that the inference

engine needed is quite complex and two, the size of the rule base is quite large.

Nevertheless this is to be expected from any system which tries to approach a human

level of reasoning capability.

This decision-analytic model, unlike alternative rule-based methods for knowl-

edge representation and handling uncertainty, does allow for the incorporatior of
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other information in a manner which adheres with the expert's opinion yet consis-

tently propagates this belief throughout the system. Furthermore, the strength of

the implication within individual rules can be controlled by the likelihood data.

.5.5 How the Rule Base Differs

The rules which operate in this expert system environment are not of the

context -if A then B". They function in the same manner, yet are not as simple

in structure nor form. Instead they operate more along the lines of mathematical

functions than simple logical statements. This allows the rule base to be more

dynamic and flexible in its manipulation of data.

Stored probabilistically in the system is the basic framework from which an

expert has determined which situations warrant what actions, and what evidence can

be used to determine the needed action. This knowledge is expressed in the prior,

likelihood, and utility data. Using a decision theory approach, recommended actions

are based on the highest utility. These recommendations can vary according to the

F P(H I E) * (Ua). Consequently, varying the probabilities concerning the evidence

about the state of the world may lead to different actions. As seen in Figure 5.3

below, various values of E, and E2 would cause different courses of action to be

pursued. Because of this functional relationship, the rules are not all enumerated

beforehand, but merely the expert's functional belief as to how the information

sh, uld relate together.

Comparing this output with traditional rule bases, it can be shown that these

rules provide all the capability of those written in the rigid "If A then B" format, yet

offer much more latitude in fault diagnosis because second-order uncertainty can be

incorporated. Needless to say, this is precisely the type of system needed in an area

such as satellite operations, where human judgment must temper the information

seen in the context of the environment.
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Figure 5.3. Action Diagram

.5.6 Knowledge Base

The knowledge base is made up of three parts: the prior distribution of the

plausible hypothesis set, the joint likelihood matrix, and the utility table values.

Because the joint likelihood matrix represents the bulk of the information of the

knowledge base, and yet differs largely in comparison with alternative rule-based data

bases, its make up and use will be discussed. Particularly how various :ombinations

of the data are represented given both independent and dependent evidences.

Given the individual likelihood values provided by the expert, three joint ma-

t.rices are created representing different versions of likelihood information (see Fig-

ure 5.4). These are denoted as the P(EIH), the P(-EIH), and P({E}JH). These

values are used to calculate the posterior distribution given the observance of single
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or multiple evidences. Any of the commercial spreadsheet programs can facilitate

the development of these matrices due to the rapid updating and mathematical ca-

pabilites (this thesis used QuattroT M ).

PI) P(-I:)

bI b2 3 h4 hi k2 3 M

pl,234 0.3 0 0.257 0.257 pl,234 0.7 1 0743 0.743

p2,134 0.9 0 0.771 0.771 p2,134 0.1 1 0.229 0.229
p3,124 0.6 0 0.1 0.0 p3,124 0.4 1 0.9 0.1
p4,123 0.05 0.05 0.05- 0.05 p4,123  0.95 0.95 0.95 0.9
p12 ,34  0.27 0 0.198 0.195147 p12,34 0.07 1 0.170 0.170147
p13 ,24  0.25 0 0.025 0.2313 p13,24 0.35 1 0.66U 0.0743

p14,23 0.01 0 0.012 0.01285 p14,23 0.6U5 0.05 0.705 0.71515
p23,14 0.54 0 0.07 0.690 p23 , 14  0.04 1 0.24n 0.l02"
p24,13 0.045 0 0.038 0.03855 p24,13 0.0M 0.95 0.217 f.11755
p34,12 0.03 0 0.005 0.045 p34,12 0.31 0." 0.85 0 M.
p123,4 0.225 0 0.019 0.17332 p123,4 0.03 1 0.153 0.117014
p12 4 , 3  0.013 0 0.009 0.000007 p124,3 0.01 0.95 0.161 0.161636
p134,2 C 11, 0 0.001 0.011565 p134 ,2  0.332 0.50. 63 0.005
p234,1 0.027 0 0.003 0.034605 p234,1 0.03 0.950.1950.151755
p1234 0.011 0 0.000 0.001016 p1234 0.33 0.95 0.145 0.01613

P((I):I)
hI b2 113 h4

01,1234 0.033 0.95 0.145 0.016163
pi,234 0.00475 0 0.050310 0.00591
p2 , 134  0.2915 0 0.4013IM 0.054421
p3,124 0.03325 0 0.016163 0.145475
P4,123 0.00175 0.05 0.007M66 0.01164
p12,34 0.0427! 0 0.110415 0.018M2
p13 ,2 4  0.02375 0 0.00161 0.050311
p14,23 0.0002 0 0.002M64 0.012H 4
p23,14 0.2129 0 0.054421 0.48l076

p2 4 , 13  0.0157 00.02STl 0.0264
p34,12 0.00175 00.00010 0.007M6
p123 , 4  0.2137! .0113 0.10415
p124,3 0.0022! 0 0.006161 0.000
p134,2 0.00125 0 0.000124 0.00241
p254,1 0.01575 0 0.002164 0.02191
p1234,0 0.01129 0 0.000 0.0611

Figure 5.4. Likelihood Matrices
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The P(EIH) and P(-EIH) matrices only concern evidence that is observed to

be true/false and does not take into consideration evidence not observed (i.e.. in a

situation with four evidences, P(IH) only looks at the probability of Evidence I

being true without considering the states of Evidences 2, 3, or 4). Likewise, P(-I1lH)

is Evidence 1 being observed as false given a particular hypothesis, without concern

for Evidences 2,3, or 4. The P({E}IH) matrix looks at all the evidence whether it be

true or false (i.e., P({1,234}H) would be interpreted as the probability of Evidence

I being true and Evidences 2, 3, and 4 being false). The P({E}IH) matrix is made

up of the data from the P(EjH) and the P(-EIH) matrices. Because any combination

of evidence can be derived from the P({E}IH) matrix, it is the knowledge base that

the inference engine of the expert system acts upon when determining posterior

probabilities.

5.6.1 Combining Evidence. The ability to incorporate various combinations

of the evidence and make rational decisions is an important factor in knowledge

reasoning. The decision-analytic model is able to represent combinations of both

independent and dependent evidence in a manner that accurately reflects the expert's

knowledge.

5.6.1.1 Independent Eviden~ce. In cases where the evidence is indepen-

dent concerning a certain hypothesis, the individual likelihoods are multiplied to-

gether to form joint probabilities. Therefore, the probability of P(E1,E21H) is the

P(El IH) x P(E21H) when El and E2 are conditionally independent. This assumption

makes it easy to determine likelihoods involving many different evidences. When El

and E2 are not conditionally independent (see Section 5.6.1.2, Dependent Evidence)

given the hypothesis, those values are hardwired in the system and are used whenever

Evidences I and 2 are combined together. Under the assumption that most evidence

is independent or nearly enough so for practical purposes, only a small subset of

data needs to be hardwired.
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5.6.1.2 Dependent Evidence. Because it is unrealistic to assume that

all of the evidence is independent, a hypothetical example was generated in which

two pieces of evidence are dependent given a certain hypothesis. This demonstrates

how the system handles dependent evidence data.

Assume that in this example the cause of an automobile problem is the battery

being low (H 1 ), and evidences E1 (headlights work) and E3 (car turns over) are

dependent. Initial likelihoods are P[E1 I Hi] = .3 and P[E 3 I Hi] = .6. Assume the

joint occurence of both evidences is believed to be .25 (i.e., P[Ei, E 3 I H1 j = .25). If

the evidences were treated as independent events, the joint probability would be .18

(.3 x.6 = .18). This 28% (.25 - .18/.25 ) difference could have significant ramifications

involving decisions based on the joint occurence of these evidences. The tree diagram

below (Figure 5.5) graphically shows which numbers need to be accessed anytime

these two evidences are combined concerning H1.

H1 Low Battery
.3 E3 8  .167 .25

0.1.7

- .35 .4
.7

E3
.5 - .35

El Lights E3 Turnover

Yes Yes

No No

Figure 5.5. Tree Diagram
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In this diagram the initial conditional probabilities remain the same. Conse-

quently, if the headlights do work, P[EIH1] = .3, and if they don't,P[-ElIH ] = .7.

If the car turns over, P[E3aHl] = .6, and if it doesn't, P[-E3H1] = .4. However,

the dependency of the evidences requires four additional conditional probabilities to

be saved in the system representing joint relationships. These probabilities are as

follows:
P[El,E31 HI] = .25

P[El,-E31 H1] = .05
P[-El,E31 HI] = .35

P[-EI,-E31 H1 = .35

The numbers used are hypothetical and are used merely to demonstrate the

necessity of accurately capturing the joint likelihoods of dependent evidences. Con-

sequently, any time El and E3 are used concerning Hi, these numbers need to be

used. As for other hypotheses, the probabilities are merely combined as any other

independent piece of information.

.5.7 Summary

This chapter has reviewed the basic outline of the decision-analytic approach

used in this thesis. The theory behind Bayesian reasoning was reviewed and how it

combined with utility information is a rational decision making tool. The assump-

tions used in this method have been reviewed as well how this type of expert system

offers advantages over traditional rule-based systems because of its added versatil-

ity. Why the rules in this model operate and appear like mathematical functions

was discussed as well as how the knowledge base is developed. The next chapter

discusses model applications.
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VI. Generic Formulation

6.1 [ntroduction

The goal of expert systems is to be able to accurately represent and utilize

knowledge in a manner that closely resembles human intelligence. As debated in the

literature review, the ability to capture and reason with uncertainty is one aspect of

human intelligence that is particularly difficult to grasp. Another heavily debated

topic is how should this knowledge be represented. Accepting the statements that

(1) probability is the only manner to coherently model uncertainty and (2) rational

decision making requires maximizing utility, as being true, this chapter, under the

assumptions of Chapter IV, sheds some light on how information can be probabilis-

tically captured in a knowledge base, and how uncertainty assessments by the user

are coherently manipulated by a decision-analytic reasoner. As with any expert sys-

tem, the effectiveness and accuracy of the output is directly related to the knowledge

captured in the data base. Consequently, care should be taken to avoid incorrect

assumptions, or faulty implications concerning the system description.

6.2 Overview

The ability to accurately represent an expert's interpretation of how knowledge

relates together is an important facet of expert system technology. Several promi-

nent papers have been written concerning how this process can be done in a manner

that is both easy to apply yet quantitatively and qualitatively accurate. Decision

trees, graphs, or networks, including belief networks and influence diagrams, are well

known representations which can facilitate the assessment of coherent prior distribu-

tions and data dependencies. This thesis did not have to resort to influence diagrams

and the like because the expert was able to accurately quantify his knowledge in a

probabilistic manner without such tools. However, the domain size in the example

was small and no doubt attributed to this result. Given a larger domained problem,
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graphical representations such as belief networks and influence diagrams are recom-

mended because of their ease of use and versatility. Current work by Morlan (22)

and Deakin (5) shows how these knowledge representation schemes can directly be

applied to decision-theoretic models like this one.

Concerning decision-theoretic inference, the assessment of priors, likelihoods.

and utility values are important problems.

Priors, in reference to the hypothesis set, give the initial probabilities of each

hypothesis without the acquisition of additional evidence. They should reflect the

[decision maker's] prior information about the uncertain quantity in question. If this

information is primarily in the form of sample results, the priors should be close to

the observed relative frequencies. Under the assumption that the hypothesis set is

exclusive and exhaustive, the sum of the individual priors must equal one.

Likelihoods are conditional probabilities which capture the probabilistic rela-

tionship between evidence and hypotheses. They denote the conditional probability

of obtaining a particular sample result (evidence) given some value of the basic

random variable (hypothesis). They, as priors, should be based on prior data, if

possible.

Utility involves quantifying how useful or valued some action or consequence

is. In the assessment of the utility functions, as in the assessment of probabilities,

an element of vagueness is involved. However, unless the decision-making problem

is highly sensitive to slight changes in the utility function, it appears as if the model

is fairly robust over a range of utility values. (Data in this thesis support this

assumption.)

6.3 Converting Knowledge into Decision Analytic Format

The following outline shows how GPS contingency procedures can be fashioned

into the necessary probabilistic format. The method should be applicable to any type

of knowledge that can be written in the "If A then B" structure. The procedure
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involves taking data, which in the case of checklists is written in a posterior-type

format, and transforming them into likelihood ratios and plausible hypotheses. The

following example was taken from GPS OOH 3.7-51.

Data: Disable the loadshed when any of the following conditions are met.

3.7.9.1.2 LS1TM and/or LS2TM > 4.20 v during earth or lunar eclipse.

3.7.9.1.3 LS1TM and/or LS2TM > 4.20 v and IGS is active.

Step 1) Determine state of the world.

- EO LS1TM > 4.2

Step 2) Determine hypotheses which would explain present state of the world.

HI - Combined eclipse (earth or lunar).

H2 - IGS is active.

Step 3) Determine relevant evidence (information) needed to discern between hypotheses.

El - Vehicle is in eclipse (earth or lunar). (This could be broken down into

separate telemetry values or can be looked at as just one evidence state incorporating

multiple telemetry values.)

E2 - L3RFP is between 12.6 and 22.5.

Step 4) Determine appropriate response actions for each hypothesis.

Al - Disable loadshed.

After putting information into the necessary format, subjective calculations

of likelihoods, priors, and utility actions are made. This would include the joint

likelihood matrix and the action diagram. Below are hypothetical assessments.

* P(E1IHl,EO) = 1.00

* P(E2IHl,EO) = .00001

* P(ElIH2,EO) = .0001
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" P(E21H2.EO) = 1.00

" P(H1) = .990

* P(H2) = .010

The data is now in the necessary format to be accessed by a Decision-Analytic

Reasoner (see Appendix C, Scheme Program). Upon the observation of the LS1TM

and/or LS2TM being greater than 4.2V, this area of the knowledge base would

be accessed. In this case, there are only two relevant evidences which need to be

observed. Upon the observation of these telemetry points, the appropriate action

would be recommended. In this case, the only action is to disable the loadshed timer.

This is a simple example which demonstrates how "If .. then.." information can be

captured probabilistically in the knowledge base.

6.4 Likelihood Determination

In order to determine the appropriate likelihood values to be used in determin-

ing the posterior probabilities, the P({E} I H) table is referenced (see Figure 6.1).

This table contains the set of joint likelihood values which were determined by the

expert. For example, assume Evidences 1, 2, and 3 were observed, with E12 being

true and E3 being false. The table is arranged so that all affirmative evidences are

on the left and all negative responses to the evidence are on the right, separated by

a comma (e.g., P(E12,3IHi) ).
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P((I}:N)
i1 b2 h3 h4

0,1234 0.033 0.95 0.145 0.010163
p1,234 0.00475 0 0.050319 0.005591
p2,134 0.29925 0 0.489789 0.054421
p3,124 0.03525 0 0.016103 0.145475
p4,123 0.00175 0.05 0.007050 0.000850
p12,34 0.04275 0 0.160415 0.018823
p13,24 0.02375 0 0.005591 0.050310
p14,23 0.00025 0 0.002648 0.000204
p23,14 0.20025 0 0.054421 0.480780
p24,13 0.01575 0 0.025778 0.00284
p34,12 0.00175 0 0.000850 0.007650
p123,4 0.21375 0 0.018823 0.160415
p124,3 0.00225 0 0.008016 0.00000
p134,2 0.00125 0 0.000204 0.002648
p234,1  0.01575 0 0.002864 0.025778
p1234, 0 0.01125 0 0.000900 0.008016

Figure 6.1. Joint Likelihood Matrix

However, the data base table is formulated with all evidences being observed

given a particular scenario, and, in this case, we have only observed three of the

possible four. In order to determine the necessary likelihoods considering only the

three observed evidences, all combinations of the data where E12 are on the left

and E3 is on the right are summed together. This would involve the following

combinations of data: (E124,3) and (E12,34) (see Table 6.1. Assuming there is no

uncertainty in the evidence states, the likelihood value would be:

Combined with the prior probabilities, these values would be used in determining

the posterior distribution.

6-5



Table 6.1. Determining Likelihood With No Uncertainty

H1 H2 H3 H4

(12,34) 0.04275 0 0.169415 0.018823
+

(124,3) 0.00225 0 0.008916 0.000990
(12,3) 0.045 0 0.178331 0.019813

6.5 Uncertainty Assessment

In order to modify the evidence according to the subjective belief assessment.

a derivation of Bayes' Rule (see Chapter IV) is used. A vector is created which

enumerates the various combinations of the data incorporating the belief assessments.

In cases where the belief is some number other than one, both cases of confirmation

afid disconfirmation are factored into the assessment. Consequently, if belief in some

evidence is .7, then the disbelief in that evidence must be .3. Table 6.2 below shows

the vector created when the belief in Evidences 1 and 2 are .9 and .1, respectively.

This value is the likelihood value used in determining the posterior probabilities.

P(E12,31Hi)

Table 6.2. Determining Likelihood With Uncertainty

Vector f Posterior (Vector)

El E2 E3
Y(.9) Y(.1) N(1.0) P(HiIE12,3)*P(.9*.1*1.0)
Y(.9) N(1-.1) N(1.0) + P(HiIE1,23)*P(.9*.9*1.0)
N(1-.9) Y(.1) N(1.0) + P(HiIE2,13)*P(.1*.1*1.0)
N(1-.9) N(1-.1) N(1.0) + P(HiIE,123)*P(.l*.9*1.0)

6.6 Posterior Assessment

Using Bayes' Rule, posteriors are determined based upon the evidence observed

and the degree of belief. Posterior values involving each , the possible hypotheses
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are calculated and these values are combined with the utility values of the action

matrix. The DA reasoner does a comparison of the resultant utilitiesand using the

rational approach of maximizing utility, recommends the action yielding the highest

result. See Figure 6.2 below showing a 2 hypothesis and 2 action decision matrix.

In this case the selection is made according to the following formula for expected

utilitv:

If P(HlIE)a + P(H21E)b > P(HlIE)c + P(H21E)d

Then A 1 is preferred to A2.

H1 H2

Al a b

A2 c d

Figure 6.2. Action Utility Table

6.7 .,ction Vectors and Utility Assessments

The action matrix ties together all actions which have been identified as pro-

ducing definite benefits (or losses) if taken when the hypothesis is true.

Given the plausible set of hypotheses, which can explain the present state of

the world, actions are determined which would provide the most utility given perfect

information. In so doing, there are as many optimal actions as there are hypotheses.
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This assumes that each hypothesis would have a different optimal action associated

with it.

Using a reference lottery, and a range from 0-100, the various actions of the

plausible set are scaled in relation to one another as to the amount of utility they

provide given each hypothesis. It is assumed that the optimal action for each hypoth-

esis is given a value of 100. This represents doing the best that can be done under

the present circumstances. A value of zero conversely would represent an action that

not only did not help the situation, but could also be potentially damaging. As

mentioned before, this ranking within each hypothesis is also a subjective process.

Raiffa (25), gives a good description of how these values can be determined using a

reference lottery.

6.8 Determining Utility Assessments Between Hypotheses

After utility data is determined within a particular hypothesis for the various

actions, there must be some way of relating these assessments together so that they

adhere to the expert's overall belief in the hypothesis' importance. This thesis used

a ratio formula based on criticality to determine relative weights. This method,

described below, is by no means the only way to determine this scale ranking.

Given the plausible set of hypotheses, the expert needs to rank order them

from the most critical to the least. The least critical hypothesis is assigned a value

of I and then the values of the others are determine by means of ratios. In the

example used in the thesis concerning the loadshed 1 timer (see Chapter VII), the

hypotheses were ranked as follows:

1. Attitude problem,

2. Solar array not tracking,

3. Faulty timer,

4. Eclipse operations.
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The eclipse, which is a routine and expected event, was assigned a value of I

and the the expert was queried as to how many times she would be willing to make

a wrong assessment concerning the eclipse versus an attitude problem. The value

was 100 times for the attitude problem, 20 times for a bad timer, and 50 times for

a solar array tracking problem. Figure 6.3 shows the unscaled utility values initially

provided by the expert and the scaled values which incorporate the ratios. The

scaled utility table is the one captured in the knowledge base and one used by the

DA reasoner.

HI H2 H3 H4 HI H2 H3 H4

Al 100 2 50 10 100 200 1000 500

A2 0 100 0 10 0 10000 0 500

A3 40 10 100 60 40 1000 2000 3000

A4 10 40 10 100 10 4000 200 5000

Unscaled Scaled

Figure 6.3. Utility Table

The assessment of utility, like most probabilistic inferences, is a subjective

process. As with probability assessments, much has been done in the area of de-

temining how to accurately capture an expert's value judgements concerning utility

assessments. Studies show that unless the decision making problem is highly sensi-

tive to slight changes in the utility factors, it shouldn't be too difficult to determine

a set of utilities that are reasonably good approximations of the expert's preference.
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6.9 Summary

This chapter provided insight as to how knowledge can be captured in a probab-

listic manner for use in a decision-analytic system, how uncertainty in the evidence is

represented using Jeffrey's Rule, and how utility values are assigned. Also discussed

were the advantages this approach offers. Though this thesis deals with manipulat-

ing probabilities, it has not concerned itself as to the various methods with which

these probilities can be ascertained. Several papers advocating probabilistic repre-

sentation of knowledge have deeply researched this area with algorithms and other

heurestic techniques which can be used to obtain accurate probabilities from expert

knowledge. Because of the assumptions that this method is best applied towards

areas which already lend themselves to probabilistic methods due to large historical

data bases, known frequencies, etc., discussions concerning specific techniques to ob-

tain probabilities in complex domains were not presented. This chapter has laid the

groundwork for thz next chapter in which the method will be applied to an actual

problem.
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VII. Problem Application

7. 1 Introduction

The following example was generated as a test case to demonstrate the utility

of the decision-analytic approach to rule-based expert system development. The

example concerns satellite anomaly resolution, and serves as a guideline as to what

infc-mation is required in the application of the methodology. Given the fact that

on-orbit anomalies in military satellite systems or subsystems occur quite often. and

the number, frequeicy, and severity of the anomalies are likely to grow with the

inevitable increases in spacecraft complexity, (17:207) the successful application of

this approach to this type of problem should be of interest to the Air Force.

7.2 Assumptions in Satellite Anomaly Resolution

The following assumptions apply to fault diagnosis in satellite operations.

(a) Time between failures is long compared to diagnosis time, ruling out si-

multaneous failures (which, historically, do not happen in this enviroment).

(b) Sensors, which are monitored via telemetry can either be the cause of an

anomaly or merely indicate one has occured. Therefore, information from aojacent

values can be used to determine the veracity of individual sensor readings.

(c) Past trends can be used to reliably forecast future problems.

7.3 Problem Formulation

The situation concerns a hypothetical, yet realistic, occurence in GPS satel-

lite operations in which the Loadshed One Timer on the vehicle is unexpectedly

timing up. Based on previous experiences and historical telemetry data, GPS Elec-

trical Power Subsystem (EPS) engineers have concluded that there are four likely

conditions (hypotheses) that could explain the sensor reading.
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These conditions are:

1. Eclipse operations;

2. Attitude problem (loss-of-earth, loss-of-yaw control);

3. The timer is faulty; or

4. The solar arrays are not tracking.

Based on these hy.)otheses, the appropriate actions are either going to be

1. Monitor the vehicle;

2. Carry out appropriate attitude contingency procedure;

:3. Disable the loadshed; or

4. Perform solar array contingency procedures.

In order to ascertain the problem and narrow the hypothesis set, the following teleme-

try values (evidence) can be consulted:

1. Loadshed 2 is also timing up;

2. SDV (shunt dissipation voltage) > .3;

3. BCC (Boost Convert Current) < .15;

4. ± YSAC (Solar Array Current) summed is > 1.0;

.5. Yawl and Yaw2 > 1.5 and HZ > ± .35;

6. Pitchl and Roll > 0.5 degrees; and

7. YER (Yaw pointing error) > 2 degrees or YPOS of one wing is > ± 5 degrees.

These values correspond to critical points the GPS Orbital Operations Hand-

book (OOH) Sections 3.7 and 3.8 enumerates. The value tolerance levels have been

determined from these contingency procedures as well as from expert input. As
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with the initial assumptions previously mentioned, the hypotheses form an exclu-

sive and exhaustive set (i.e., the problem is definitely one of these choices, and it

is not a combination of two or more hypotheses). Also, only one action will be

recommended. In real world satellite operations most decisions concerning anomaly

resolution are made in group decisions. So, even though the expert system would

recommend a particular course of action, more often than not this decision would be

reviewed before any action is initiated. For purposes of this thesis, the goal will be

the recommendation of an action based on the available evidence.

In order to facilitate testing of the methodology a computer program coded

in PC Scheme was developed as a prototype decision-analytic reasoner. The pro-

gram. using the QuattroT ' -generated file as the knowledge base, allowed for varying

degrees of evidence belief to be manipulated in a manner which adhered to Bayes'

theorem, while also calculating utility values in a decision theoretic manner.

7.4 Knowledge Base

The following likelihoods and priors were determined from personal interviews

and phone conversations with Lt Pam Neal, Master Control Station (MCS) EPS

Engineer. The values are based on the scenario that Loadshed I Timer is increasing

(Eo). Suggested actions were determined from the GPS OOH as well as inputs from

Lt Neal.

7.4.1 Priors. The prior probabilities of the hypotheses were determined math-

ematically. Given the initial scenario, Lt Neal ranked the likelihood of possible out-

comes in relation to one another. It was determined that H2 (attitude problem) was

the least likely and each of the other values was determined in relation to it. It was

determined that the likelihood of eclipse operations to an attitude problem was 500

to 1; a faulty timer to an attitude problem was I to 1; and a solar array tracking

problem to attitude problem 10 to 1. Since the hypotheses are mutually exclusive
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and exhaustive, the probabilities are summed and the unknowns set equal to 1. The

solved equations yield the following prior probabilities:

P[HI] = .9766

P[Hj = .001953

P[H3] = .001953

P[H4] = .01953

7.4,2 Likelihoods. The following likelihood data was determined by EPS en-

gi~neers to be an accurate representation of the data, given the initial scenario of

Loadshed 1 timing up.

Priors P[EiIHi] Eclipse P[(Ei IH21 Attitude problem

PEHi] = .9766 P[E1IH1] = .999 P[E1IH2] = .999
P[H2] = .001953 P[E21H11 = .005 P[E21H21 = .005
P[H3] = .001953 P[E31I = .001 P[E31H21 - .001
P[H4] = .01953 P[E41H11 - .9 PCE41H2] - .99

P[E5IH1] = .81 P[E5IH2] = .92

P[E61H11 - .0001 PEE6IH2] = .81

PEE71I = .45 P[E71H21 - .58

P[EiIH3] Faulty Timer P[EiIH4] Solar Array Prob

PEIH31 .001 PEIH4) - .999
P[E21H31] .989 P[E21H41 - .005

P[E31H31 - .999 P[E3IH41 - .001
PEE41H3) - .9 P[E41H41 - .99
P[E5IH3] - .0001 PrE5IH4] = .2
P(E61H31 - .0001 KUM1H] = .02
P[E71H31 - .001 P(E71H41 - .99

These values were used to generate the joint likelihood matrix. See Appendix E

for Quattro"M data files.
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7.4.3 Utilities and Actions The following utility values were determined as

accurate representations of the expert's belief of the relative utility each action pro-

vided given the a particular hypothesis (see Figure 7.1). Diagonal values of 100

indicate doing the correct action given the stated hypothesis. Lower values repre-

sent the relative utility provided by an action given an inaccurate assessment (f the

problem. The scaled utility table, which reflected the relative importance of the

hypotheses, was used in the knowledge base (see Section 6.8) for the actual problem

application.

Hi H2 H3 H4

Al 100 2 50 10

A2 0 100 0 10

A3 40 10 100 60

A4 10 40 10 100

Figure 7.1. Unscaled Utility Table

7.5 Validation and Testing of Methodology

The decision-analytic methodology was tested and evaluated using the GPS

OOH, Sections 3.7 - 3.8 which concern satellite anomalies, as well as from discussions

with the MCS GPS EPS satellite engineer. Comparing the model's output against
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the expert's recommended actions and contingency procedures in the OOH proved

to be quite successful.

7.5. 1 Test Methodology. In order to test the viability of accurately represent-

ing GPS system knowledge, several computer runs were done with a PC Scheme-

coded program which combines information in a decision-theoretic manner. This

program was developed as a prototype inference engine which reasoned with uncer-

tainty using a derivative of Bayes' Rule and made recommendations according to

maximum utility. (See Appendix C for computer code.) The utility and likelihood

values provided by the expert were used as the knowledge base.

Simulating the situation of seeing the timer increase, the expert was asked;

given the observance of certain telemetry points (no uncertainty involved), what

would he surmise the problem to be and what course of action would be taken. Be-

cause the evidence set is a compilation of the evidences which have been determined

as necessary to differentiate between the different hypotheses, conflicting subsets of

the evidence data were not mixed. This would avoid giving credance to multiple

problems occuring simultaneously, which would violate one of the assumptions of

this thesis. This testing was done in order to confirm that the assumptions used

in combining the data (i.e., independence) would, in fact, identify highly suspected

problems. It was also used to validate the utility values and likelihoods in order to

see if they did indeed provide answers which coincided with expert opinion and GPS

OOH material.

The system performed quite well, correctly identifying suspected problems in

all cases where all seven of the telemetry points in the evidence set were commented

upon. See Appendix F on computer runs to show actual output versus expected

output. However, some interesting facts were observed which showed that the system

had apparently captured some heuristic expert knowledge that would not show up

in the GPS OOH. In particular, when Evidences (1 and 6) are observed as true, and
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Evidences (2 3 4 5 7) are observed as false, the correct assessment is an attitude

problem with the recommendation to start attitude contingency procedures. The

DA reasoner coincided with this assessment outputting a normalized utility value of

about 63% in favor of an attitude problem. However what is interesting is the fact

that if the belief in the level of E-6 drops below .995, the suspected hypothesis is an

eclipse (normal operations). The expert agreed this was an accurate assessment due

to the fact that an attitude problem is so rare, you would almost have to be 100%

sure of the telemetry value before you would act accordingly. This stands in direct

conflict with the GPS OOH, which, written under the guise that all telemetry values

are assumed to be true, recommends that appropriate actions be taken regardless of

an operator's subjective feelings. In order to further illustrate the manner in which

the model had mimmicked the expert's reasoning, if the belief in E-6 drops to .9,

the normalized belief in an attitude problem drops to only 3%. See results below for

corresponding computer output.

This shows how certain one must be of the loss of earth values before appro-

priate action would be taken.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(6 1))((2 1)(3 1)(4 1)(5 1)(7 1)))

2.2255475021483e-4 10.026347394230459 1

0.00528862635 IO.62609997426044 I
6.6 109466042966e-4 10 0782644343703208 I
0.00227466014004297 10.269288197138781 1

Do action 2
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Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((l 1)(6 .996))((2 1)(3 1)(4 1)(5 1)(7 0)))

0.00427808700996717 10.293918175243603 I
0.0052754674266 * 10.362441379983816 I
0.00229851447977434 10. 157915250459447 I
0.00270329842840143 10.185725194313134 I

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

M(1 1)(6 .9)M(2 1)(3 1)(4 1)(5 1)(7 IM)

0.101610861244023 10.630505693315243 I
0.004959653265 1I0.0307751512207163 I
0.0415965901440467 10.25811105808204 I
0.0129906173490047 10.0806080973820009 I

Do action 1

7.5.2 Uncertainty Testing. Varying the belief in the evidence (uncertainty)

proved to be quite interesting, especially when conflicting information was entered.

The expert really didn't know how to approach this type of problem because of

the complexity of trying to determine which problem to act on or how to logically

combine several pieces of partial information. This is precisely the type of situation in

which expert systems can be used to augment operator knowledge by recommending

actions which will maximize the expected utility.

Given the expert's inability to quantify her actions given certain hypothetical

situations, several runs were done showing exactly how sensitive the system was to

varying degrees of belief. Though several cases were done in which the belief in

the evidence ranged from .1 to 1, the expert noted that given the reliability of the

satellite equipment, it is unlikely that belief would ever drop below .8. Also, due to
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the fact that a .5 belief in a value is also a .5 disbelief in it (indifference), it would

not make sense logically to use values below this mark. Appendix G is a listing of

a few computer runs which show how slight variations in the levels of uncertainty

can cause a small change in the output utility values or a large change. Because

of the rational nature in which the system operates, the actions recommended will

maximize the expected utility.

7.5.3 Sensitivity. Sensitivity testing was done in order to see exactly how ro-

bust the model was given the variability of the prior and utility information. Three

scenarios were involved in the testing: the first concerned a suspected attitude prob-

lem, the second concerned a faulty timer, and the third involved a solar array prob-

lem. The eclipse operations hypothesis was not tested because under the scenario

that the data was developed, this would indicate normal operations.

7.5.4 Prior Sensitivity. In the prior test, three sets of prior values were tested

with the scaled utility data in order to determine how sensitive the output was

to change. First, the expert provided data was used as a gold standard in order

to measure any noticeable change given the variability of the data. The first test

involved modifying the ratios provided the expert which were used to calculate the

initial priors. Instead of predicting that the eclipse operations are 500 times more

likely than the attitude problem, the number was halved to 250. The ratio of the

solar array problem was doubled from 10 to 20 times more prevalent while the ratio

between the attitude and faulty timer problems stayed the same. Using these ratios,

the new prior values are:

Hi = .9191, H2 = .00367, H3 = .00367, and H4 = .07353. See Section 2.4.1 for

formula used to solve equation. Test Two involved changing the prior values to (.-5

.05 .05 .15) while the Test Three set all values equal to .25.
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These tests concern varying the priors with Scenario 1, the attitude problem.
This first test is the gold standard with the expert's priors and utility values.

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(5 1)(6 1))((2 1)(3 1)(4 1)(7 1)))

0.00164951870500002 10.0177405542122364 I

0.060703116705 10.652861304023074 I
0 00626584711000004 10.0673891117473198 I
0.02436162877 10.26200903001737 I

Do action 2

This test is with prior values of (.9191 .00367 .00367 .07353) Though the values have
been modified accordingly, the effect is minimal with all values maintaining roughly
the same percentages.

0.00270210990500004 10.0155071975041286 I
0. 114078195705 10.654685846951901 1
0.0116564311100001 10.0668953468848772 I
0.04581202127 10.262911608659094 I

Do action 2

This test is done using prior values of (.75 .05 .05 .15) and scaled utilities. A more
dramatic change of the priors still results in minimal change of the values. The
attitude problem still has about 66% of the utility yet its prior is 25 times higher
than it originally was.

0.0314412750000006 10.0133050227978924 ]
1.554029775 10.657619692107851 I
0.155711250000001 10.0658924210655677 I
0.6219309 10.263182864028689 I

Do action 2
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This test was done with all the priors equal to (.25 .25 .25 .25) Even with equal
priors, no change is really noticcable in this scenario. I attribute this to both the
likelihood values and the high utility values associated with the attitude problem.

0.155560125000003 10.0131702717674423 I
7.770049625 10.657839952287012 I
0.777341950000006 10.0658125257853416 I
3.1085073 10.263177250160204 I

Do action 2

These prior tests were done on Scenario 2, the faulty timer. This is with the expert
provided priors and scaled utilities. The timer has 62.2% of the utility while the
eclipse has 31%, the attitude problem zero percent and the solar array 6%.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

Ml( 1)(2 1)(3 1))((4 1)(5 1)(6 1)(7 1)))

1.978629044814e-4 10.316803337336471 1
1.005795e-8 11.61040399923114e-5 I
3.87584931087e-4 10.620572107700108 I
3.9102776028e-5 10.0626084509234294 I

Do action 3

This test was done with priors of (.9191 .00367 .00367 .07353) With the mod-
ified priors, the values stay essentially the same.

3.67041348026e-4 10.314623078595486 I
2.611918e-8 12.23890220166899e-5 I
7.26464722810001e-4 10.622716129424492 I
7.30743719200001e-5 10.062638402958005 I

Do action 3
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This test was done with priors of (.75 .05 .05 .15). This dramatic change in
the priors still results in roughly the same proportional utilities.

0.00493894759000001 10.31261844663589 I
1.889e-7 I1.19567222557872e-5 I
0.00987175835000001 10.624848452976168 I
9.87749300000001e-4 10.0625211436656868 I

Do action 3

This test was done with priors of (.25 .25 .25 .25) Even with equal priors- the timer
problem is still identified with 62% of the utility. Just like the attitude problem it
appears as if the likelihood values combined with the utilities are determining the
result.

0.02467636995 10.312501314443063 I
8.465e-7 I1.07200679521362e-5 I
0.0493508957500001 10.624979274588059 I
0.0049359395 10.0625086909009255 I

Do action 3

This is Scenario 3, the solar array problem, with the experts original priors and the
scaled utilities. The solar array problem has 52% of the utility with the eclipse at
10%. the attitude problem at 5% and the timer at 33%.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

Ml( 1)(4 1)(7 1))((2 1)(3 1)(5 1)(6 1)))

14.9160660502193 10.102468532262818 I
7.62023493 10.0523485405700168 I
47.7074220910387 10.327734504744941 I
75.3235620340039 10.517448422422224 I

Do action 4
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This was done with priors of (.9191 0.00367 0.00367 0.07353) The slight change
in the priors caused the eclipse to become the recommended action with a value of
.55%. The solar array goes to 44% while both the attitude and the timer drop to
zero.

0.0702238355 10.555739383545053 I
3. 180789e-5 12.51722183139211e-4 I
3.6333e-14 12.87533127157978e13 I
0.05610544884 10.44400889427152 I

Do action 1

This is with the priors of (.75 .05 .05 .15). With these priors, once again the solar
array is the recommended action with 66% of the utility. The eclipse drops from
55% to 33%.

0.05730375 10.332791203735817 I
4.3335e-4 I0.0025166776718612 I
4.9500000000000le-13 12.87470969786846e-12 I
0.1144542 10.664692118589447 I

Do action 4

This is with equal priors of (.25 .25 .25 .25). With equal priors the selection of the
solar array problem is pronounced with almost 90% of the utility. Eclipse goes from
33% to 9% while attitude increases from zero to 1.

0.01910125 10.900896120729963 I
0.00216675 I0.0102193137600505 I
2.475e-12 11.16731517508365e-11 1
0.190757 10.89969107415528 1

Do action 4

7.5.5 Utility Sensitivity. In order to test the effects of utility values on the

recommendations of certain actions given the evidence, three tests were done in each

scenario. Test One involved the expert provided data in which the scaled utility

values were used. This served as the standard with which other values could be
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compared. Test Two involved using the unscaled utility values which were provided

by tL-e expert to see if the scaling actually had any noticeable effect on the output.

Lastly in Test Three, the posterior probabilities would be examined in order to see

what if any different action would be pursued given the knowledge of the likelihood

and prior data without utility data. As in the prior test, these tests were run on

scenarios that would indicate an attitude problem, a faulty timer problem and a

solar array problem.

These tests concern varying the priors with Scenario 1, the attitude problem.
This first test is the gold standard with the expert's priors and utility values. In this
case the attitude action has a 65.2% value associated with it.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(5 1)(6 1))((2 1)(3 1)(4 1)(7 1)))

0.00164951870500002 10.0177405542122364 I

0.060703116705 10.652861304023074 I
0.00626584711000004 10.0673891117473198 I
0.02436162877 10.26200903001737 1

Do action 2

This is with the unscaled utility values provided by the expert. In this case the belief
in the attitude problem drops from 65% to about 39% while the eclipse action (1)
has climbed from 1.7% to 28%. The solar array problem dropped from 26% to 18%
and the timer increased from 6% to 14%.

4.4387458210000le-4 10.282451031895904 I
6. 070699341e-4 10.386297247542986 I
2.33827324600002e-4 10. 14879150954368 I
2.86738021e-4 I0.18246021101743 I

Do action 2
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This is with only the posterior values used. No utility information. Though
the attitude problem is still recommended with an increased value of 58%, the strong

prior associated with the eclipse hypothesis (.9766) causes this value to go up to 4117%
while the timer and solar array problems went to zero.

4.316572e-6 10.415284628041265 I
6.069924e-6 10.583969;39309422 I
2. 1483e-20 12.06681590489178e-15 I
7.75341e-9 17.45932649310941e-4 I

Do action 2

This is Scenario 2, the faulty timer. Values used are those provided by the expert.
In ths case the timer value is 62%, the eclipse 31%, the attitude problem essentially
zero, and the solar array about 6%.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((l 1)(2 1)(3 1))((4 1)(5 1)(6 1)(7 1)))

1. 978629044814e-4 10.316803337336471 I
1.005795e-8 I 1.61040399923114e-5 I
3.87584931087e-4 10.620572107700108 I
3.9102776028e-5 10.0626084509234294 I

Do action 3

This is with the unscaled utility values. In this case the timer goes down to .5.5%
while the eclipse increases from 31% to ,38%. The attitude problem goes even lower
while the solar array stays about the same.

1.4735984803614e-5 I0.382852028280071 I
1. 388583e-10 13.60764363610666e-6 I

2. 1315 7 1637567e-5 10.553798429994764 I
2.43818669628e-6 10.0633459340815384 I

Do action 3
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This is with only the posterior values. The timer is identified with a strong
79 7 value. I attribute this to these 3 evidences being very descriptive of a faulty
timer anomaly. The eclipse drops to 21% while both the attitude and solar array
problems are zero.

5. 09785200000001e-8 10.209144449071664 I
6.23007e-13 12 .555 94818 725201e-6 I
1.927611e-7 10.790821586463239 I
7.65576e-12 13 .140 85169091783e-5 I

Do action 3

This is Scenario 3, the solar array not tracking. Values used are those provided by
the expert. In this case the the distribution is rather spread out. The solar array
problem holds just over half the utility with 52%. The timer is next with 33% while
the eclipse and attitude problems are 10% and 5%, respectively.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

Ml( 1)(4 1)(7 1))((2 1)(3 1)(5 1)(6 1)))

14.9160660502193 10. 102468532262818 I
7.62023493 10.0523485405700168 I
47.7074220910387 10.327734504744941 I
75.3235620340039 10.517448422422224

Do action 4

This is with the unscaled utility values. Without the scaling, the eclipse scenario is
now the choice with 55% while the solar array problem goes to 16%. This is quite
a dramatic turnaround. I attribute this to strength of the prior for the eclipse and
also because Evidences 1 and 4 also lend belief to an eclipse. The attitude problem
drops to 1% while the time- problem goes to 28%.

7.61076552170296 10.548425223791249 I
0.1507120335 10.0108601796316775 I
3.87897039691193 10.279515273718491 I
2.23704198004019 10. 161199322858582 I

Do action 1
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This is with only the posterior values. The dominant prior of the eclipse causes
it to be selected with 83% of the total utility. The solar array problem is still about
the same (16%) while both the timer and the attitude problem drop to zero.

0.074617123 10.833375784690598 1
1.692665le-5 I 1.89048578826992e-4 I
1. 93347e-14 12. 15943340300822e-13 I
0.01490193684 10.166435166730359 I

Do action 1

7.5.6 Stength of Likelihoods I believe that the very minor changes observed

in some of the output given the variability of the prior and utility data indicates

the strength that is contained in the likelihood data. I also attribute this lack of

variation to the dissimilarity of the problems and the discriminating evidences. If

you examine the cases below you can see that in all three cases, given the observed

values, the likelihood values are in the 90% range of the suspected problem with the

attitude and faulty timer values being 99%. Consequently the utilty values would

have to be ridiculously large or the prior values so insignificant in order to effectively

overcome the strength of the likelihood. Had there been two problems in which

the evidences were the same yet the likelihoods were slightly different, the effect

of varying the priors or utilities would have a much more pronounced effect. This

confirms my belief that the strength of the implication in the rules which operate in

this type of system are contained in the likelihood data.

This is the likelihood value of the attitude problem.

1.105e-6 I0.00141993570454029 I
7.77e-4 * 10.998452527083985 I
2.75e-18 13.53377664025863e-15 I
9.925e-8 I1.27537211471153e-4 I

Do action 2
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This is the likelihood values for the faulty timer problem.

1.305e-8 15.28592012847095e-4 I
7.975e-11 13.230284 52295446e-6 I

2.4675e-5 * 10.999464208199392 I
9.8e-11 13.969503238 23871e-6 I

Do action 3

This is the likelihood valuts for the solar array problem.

0.01910125 10.0900896120729963 1
0.00216675 10.0102193137600505 I
2.475e-12 11.1673151 7508365e-11 I
O.1907,T * 10.89969107415528 I

Do action 4

The robustness of the system can be attributed to the combination of the

iiKelihood, priors, and utility values. Given the fact that the expert provided values

are fairly accurate, varying the prior or utility information still will usually result in

the expected outcome. Further testing would have to be done in order to see if this

robustness would hold given varying degrees of belief in the evidence or changes in

the likelihood data.

The expert noted that determining the likelihoods was the easiest of all the

subjective evaluations. Consequently, I feel fairly safe in attributing the overall

robust nature of .he system to the strength of the likelihoods. Judging from this

example, it appears that if the likelihoods give an accurate representation of the

data, the priors and the utility values can compensate for the inaccuracy of one

another allowing the system to still yield favorable results. Further testing in different

,.ituations vould have to be done before this hypothesis could really be substantiated.
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7.6 Functional Relationship of Etidences

Because the DA model represents and manipulates the system knowledge in

functional in manner, a few evidences were isolated and graphically depicted in or-

der to examine this relationship. This type of information can be used in sensitivity

analysis to determine which values have the most effect on the action. Looking at

the two telemetry points El and E3, (Figure 7.2) shows how these values relate func-

tionally in the decision space. (Figure 7.3) shows the complex relationship between

E123 and E7. Points falling along the lines separating the different action spaces in-

dicate values where the user would be indifferent between the two actions. Although

Morlan (13) recommends determining these functions and writing rules which repre-

,ent their information, this research did not because of the complexity involved with

accurately defining such functions and because of the limited flexibility the system

would have due to the complexity of altering any of the values. Furthermore. though

this might be possible in two-space given the ability to graph the function, as the

number of evidences increased beyond three, the ability to graphically represent the

decision space would dissappear.
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Figure 7.2. Graph of El vs E3
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Figure 7.3. Graph of E123 vs E7

7.7 Summary

Comparing the output of the computer program given the data provided by

the expert showed that it is possible to accurately model an expert's knowledge

in a probabilisitic manner. The output provided by the decision-analytic reasoner

not only agreed with checklist procedures in the GPS OOH, but also demonstrated

the ability to reason in a manner which matched the expert's given the validity of

the evidence. The mathematical nature in which the model represented the rules

provided the ability to graphically depict the functional relationship of the evidences

showing which were the most sensitive, as well as which were the most robust given

certain values. Though expected predictions were difficult to make given uncertainty

of the evidence, I operated under the premise was that if the system provided rational

output which agreed with the expert's assessment under certainty, it would also
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provide rational decisions under uncertainty or with conflicting information. The

robustness inherent in a decision-analytic model is no doubt a function of the prior.

likelihood, a utility data. In this case due to the dissimilarity of the hypotheses,

the likelihood data played the dominant factor in determining actions. However,

given the domain and the scenario in which this model was developed this was to be

expected.

Though the decision-analytic reasoner developed to test the application of the

methodology is functionally correct, it nonetheless is a rough prototype used merely

to show the capability of using decision theory as a manner of capturing system

knowledge while also reasoning coherently and consistently with uncertainty.
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VIII. Conclusions and Recommendations

I. I Jntroduction

The purpose of this thesis was to demonstrate the applicability of using a deci-

sion theory approach towards reasoning in expert systems. Particular emphasis was

placed on the management of uncertainty and how it could be consistently factored

into a decision. Using a QuattroTM -generated file as a knowledge base and a Scheme

pc-coded program as a decision-analytic reasoner, this capability was demonstrated

using an anomalous condition onboard the GPS satellite as the test scenario. The

model was able to effectively capture GPS system knowledge probabilistically in a

manner that matched expectations of the expert as well as coincided with th,. GPS

OOH. Though the application is complex, it is nonetheless a valid method for build-

ing an expert system, given the application domain satisfies the assumptions and

constraints under which the model is based.

3.2 Key Concepts

Probability was used as the representation for uncertainty because of its solid

theoretic basis, with a derivative of Bayes' Rule being used in the actual problem

application. This allowed coherent manipulation of the evidence belief values in a

manner that adhered to the laws of probability, yet allowed for subjective in1terpre-

tation. Utility assessments allowed the user the ability to rank the importance of

certain actions in terms of his own value scale. Combined together, the two areas

provided a rational framework in which sound decisions could be made.

8.3 Lessons Learned

Though the application methodology is ,valid, it is nonetheless a complex pro-

cess due to the consistent value assessments of probability and utility that must be

provided by the expert.
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In order to develop a database which could realistically manipulate several

different classes of problems would be very time consuming, not to mention extremely

hard to control. Though the detail needed by any large-scale, rule-based expert

system would be extensive, a system founded on this type of reasoning scheme would

require a more rigorous validation process due to the functional nature of the rules.

Though the assumptions of conditional independence of evidences and mutual

exclusiveness of hypotheses help with computations, they nonetheless limit potential

areas of application. The restrictive nature of the single recommended actions might

also be unrealistic in some real world applications. Nevertheless, as stated at the

onset of the thesis, this type of knowledge base reasoning is more suited towards

problems that lend themselves to probabilistic representation and involve uncertainty

reasoning.

8.4 Sensitivity of Belief Assessments

In this scenario, decision theory proved to be a viable expert system reason-

ing methodology, however the successful application of this inference method was

nonetheless highly dependent on the expert's assessment of the probabilities and

utilities. Had these values been different, the results could have been less successful.

Though I agree that probability is the only logical representation for uncer-

tainty in expert systems, there is a serious question concerning its application and

assessment in real world decision making. This is not referring to its manipulation

(this thesis showed how that can be done), but rather how and to what situations it

can be applied.

For example, if I develop an expert system's data base with my subjective

opinions and beliefs, the system is biased towards my assessments which may or

may not correlate with another expert's or a particular user's. This bias is woven

into the likelihood and utility data and directly effects the system output. Conse-

quently, problems could arise in situations in which my belief in an evidence value
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is .9 and yet a user's belief is .7. Given the disparity, a different course of action

could be pursued which, given the scenario under which the system was developed,

was inadvertantly recommended. Therefore, a reasoning system of this sort must

also provide restrictions as to under what situations a user can question the verac-

ity of the information. Otherwise, though the system recommended action will be

rational given the data it is working with, it may or may not coincide with what the

expert would have done in the same situation. With a system of this sort, added

responsibility comes with the added versatility.

q.5 Summary

This thesis demonstrated that a decision-theoretic approach towards rule-based

expert systems offers both strength in theory and application. With satellite anomaly

resolution as a model, a prototype decision-analytic reasoner was developed which

manipulated uncertainty in a sound probabilistic manner and combined it with utility

to rationally recommend courses of action. Though it is by no means close to being a

functional expert system, it nonetheless demonstrates the underlying concepts that

make decision analysis both a logical and rational choice for further development in

expert system reasoning schemes.

S.6 Recommendations

Though decision theory is unquestionably a valid reasoning methodology for

expert system development, this thesis raised a few questions which need to be

answered in order to further determine the validity and useability of this approach

in larger more complex problem domains. The following are recommendations which

can help a -hieve this goal:

1. Expand the DA reasoner to inc!ude nested hypotheses. This would allow the

system to still work with small evidence sets yet would permit much larger problems

to be handled.
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2. Explore new and more efficient ways of determining probabilities. This

could involve probabilistic knowledge acquisition tools such as belief networks or

influence diagrams. This would further insure that knowledge obtained from the

expert would be more representative of his actual beliefs.

3. Determine a quick method in which a user can determine exactly which

values have the most effect on the output (i.e., priors, likelihoods, or utilities). This

can help in fine tuning the system in order to assist with development and validation.

4. Combine a decision theoretic rule-base with a model-based expert system.

A hybrid system like this would offer much more than either a rule-based or model-

based system could alone.
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Appendix A. GPS Subsystems

The following paragraphs give a summary of each of the GPS satellite subsystems.

A..1 Structure Subsystem

The structure subsystem consists of the following:

1. Primary and secondary structure

2. Mechanisms

a. Solar array deployment
b. Forward TT&C mast deployment

c. Passive nutation damper release.

The primary and secondary structure are completely passive and neither receive commands
nor produce telemetry outputs. The solar arrays are folded along the SV sides during launch and
initial orbital operations and are deployed when configuring the vehicle for three-axis stablization-
If the vehicle is launched from the shuttle, the forward TT&C mast deployment is provided by the
PAM-D 11 after separation from the orbiter. The passive nutation damper is released by ground
control command shortly after first acquistion.

A.2 Thermal Control Subsystem

The Thermal Control Subsystem (TCS) provides space vehicle and equipment temperature
-ontrol within accepted limits during all mission phases. Passive thermal control is accomplished
by thermal coatings, insulation, blankets, thermal shields and heat transfer doublers. Active ther-
mal control is provided by heaters, thermal switches, and frequency standard active baseplate
tm.eratulre contrl nnits (ARTCU). Heat rejection is provided by semi-active louvers and direct
raAiators which are maintained parallel to the sun line by the AVCS and by passive battery radi-
ators. Minimum temperatures for the EPS batteries, OIS, LBS, and the wetted RCS component
are maintained by heaters and thermostat controls.

.4.3 Electrical Power Subsystem

ne Electrical Power Subsystem (EPS) provides for the generation, storage, control, and
distribution of electrical power to all space vehicle subsystems. The EPS is capable of supplying
all required power for steady-state and transient loads.

The solar arrays provide primary electrical power during all phases of mission operatioas
following sun acquisition. Three nickei-cadmium batteries are also charged by the solar arrays to
provide power during eclipses, and during the launch and orbit injection phases when insufficient
power is available from the stowed arrays. In addition to the solar arrays and batteries, the EPS
includes power conditioning equipment for the bus ptwer conditioning and battery charging, a
load control unit for controlling and distributing power to the loads, a solar array drive and power
transfer assembly for positioning the solar arrays and trangferring the power to the main bus, and
a DC/DC converter for providing secondary DC voltages.
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.4.4 Attitude and Velocity Control Subsystem

The Attitude and Velocity Control subsystem (AVCS), in conjuction with the other SV
subsystems, provides for space vehicle (SV) attitude control and velocity corrections and control
subsequent to separation from the PAM-D II to satisfy the operational, thermal, electrical power,
and payload and subsystem pointing requirements. The AVCS also provides active nutation damp-
ing prior to SV separation from the PAM-D II and passive nutation damping during subsequent
periods of spin-stabilized operations.

The SV has two stablization modes-an inertially stablized spin mode ard a three-axis
-tablized mode with the SV +Z axis aligned along the earth nadir. The spin-stablizied mode
is capable of SV/PAM-D II or ELV launch separation stabliziation, long-term on-orbit storage,
attitude sensing for attitude determination, precession maneuvers, and large (5-lbf) thruster drift
orbit corrections. The three-axis stabilized mode provides all on-station attitude control, including
the capability to acquire the earth and sun, provide payload and space vehicle pointing, perform
unrestricted small (0.1-lbf) orbit corrections, and stationkeeping.

Attitude control is accomplished either autonomously or from the ground with override of
autonomous functions. Velocity maneuvers are ground controlled and support drift orbit injections
correction, final orbit insertion, orbit phasing, and orbit period adjustment.

The three-axis stabilized space vehicle maintains earth nadir and solar array pointing through
a combination of yaw steering and soiar array orientation. The single degree-of-freedom solar array
drives about the space vehicle (SV) Y-axis (pitch axis) and the space vehicle yaw steers about the
Z-axis (lo-I1 vertical). The space vehicle yaws in orbit to maintain the sun in the space X-Y plane
by using the yaw sun sensor located on the solar arrays. Nadir sensing is accomplished with a
static earth sensor The solar array is maintained normal to the sun line with the pitch sun sensor
mounted on the solar arrays.

A.5 Orbit Insertion Subsystem

The Orbit Insertion subsystem (OIS) consists of a single solid rocket motor which provides
the requir,'d t'ipulse to boost the space vehicle from the transfer orbit into an initial drift orbit.
OIS ignition is controlled by ground comrr and based on mission planning activities supported by
software resident at the Air Force Mission Control Center (MCC).

.4.6 Reaction Control Subsystem

The Reaction Control subsystem (RCS) prov;'es the n'ecessary impulse to perform SV trans-
lation and spin vector precession maneuvers during the SV/PAM-D II transfer orbit operations,
SV drift orbit operations, and SV on-orbit operations. The RCS is a blowdown system utilizing
monopropellant hydrazine pressurized by gaseous nitrogen. The subsystem consists of a propel-
lant/pressurant storage (PPS) assembly, a propellant distribution and control (PDC) assembly, and
the rocket engine assembly module (REAM).

The PPS components consist of two propellant tanks, each equipped with a positivc expuision
diaphram, two propellant fill and drain valves, two pressurant fill valves, and two temperature
transducers.

The PDC components consist of two pressure transducers, two filters, and two latching
isolation valves.

The REAM components consist of twenty 0.44-N (0.1-lbf) thrusters and two 22.2-N (5-
lbf) thrusters, each equipped with a temperature sensor, thruster valve heaters, and catalyst bed
heaters. The 5-pound thrusters, in conjuction with the AVCS, are used to perform SV translation
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and spin vector precession maneuvers during spin-stabilized operations. The 0.1-pound thrusters
are used to perf, rm translation (stationkeeping and rephasing) maneuvers and provide backup SV
attitude control during three-axis stabilized operations.

A.7 felemetry, Tracking and Commanding Subsystem

The Telemetry, Tracking and Commanding (TT&C) subsystem performs telemetry, track-
ing and commanding functions, as required, to support space vehicle and launch vehicle (PAM-D
I/Orbiter) operations; and is compatible with the Air Force Satellite Control Facility (AFSCF),
the Space Ground Link System (SGLS) and the Operational Control System. The IT&C sub-
.system supports the integration, checkout and launch of the SV in the PAM-D II/Orbiter launch
vehicle and supports the upload of processor data, RFDU, NDU and DCEA, via the TT&C re-
ceiver/demodulators and signal conditioner from the OCS. The TT&C subsystem receives comn-
roands via the uplink from the OCS RTSs and processes this data for control of SV subsystems.

The TT&.C subsystem also collects, processes and transmits SV telemetry data including
Na, igation Data Unit (NDU) memory dump data and is capable of supporting non-coherent pseudo-
random noise (PRN) turnaround ranging.

.4. Navigation Payload

The Navigation Payload (NPD) consists of four Frequency Standard Assemblies (FSA), the
Frequency Synthesizer and Distribution Unit (FSDU), and the Navigation Data Unit (NDU). The
Navigation Payload, in its primary capacity, generates pseudo-random noise codes and modulo-two
adds navigation data to them prior to their output to the L-band subsystem where they modulate
the L-band carrier frequencies

A.9 L-Band Subsystem

The L-band subsystem (LBS) consists of the devices required to generate, amplify, filter,
combine, and transn.it signals at Li, L2, and L3 carrier frequencies. Interface devices from accep-
tance of uplink commands from, and exchange of data with the '1T&C subsystem are included for
control, update, and function monitoring of the L-band subsystem.

.4.10 Nuclear Detonation Detection System

The Nuclear Detonation (NUDET) Detection System (NDS) consists of the Integrated Trans-
fer Subsystem (ITS) and the Global Burst Detector (GBD).

.4.10.1 Integrated Transfer Subsystem (ITS). The Integrated Transfer Subsystem
(ITS) provides the NUDET Detection System (NDS) with a satellite-to-satellite UHF communi-
cation link. The ITS provides a data relay to other space vehicles by means of a time-division,

multiple-access (TDMA) UHF crosslink data. The TDMA mechanization provides a UHF crosslink
data 1.5 second time slot for each ITS equipped space vehicle and accomodates up to 24 satellites.

.4.10.2 Global Burst Detector (GBD). The Global Burst Detector (GBD) consists
4 the processor and those sensors used in the detection of nuclear detonations. The following
,-omponents constitute the GBD:

I Burst Detector Processor (BDP)
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2 Burst Detector Optical Sensor (BDY)

:3 Burst Detector X-Ray Sensor (BDX) or

4. Burst Detector Dosimeter (BDD)- SV's 18, 24, 28, 33, and 39.

.4. 10.3 GPS Cargo Element Should the satellite be launched from the shuttle, the
SV itself is a subsystem of the launch vehicle. The SV, PAM-D II, and cradle assembly create a
cargo element in the space shuttle's cargo bay.

This concludes a brief summary of the GPS subsystems.
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Appendix B. Program Outline

The scheme program TEST3.S was written in order to demonstrate the appli-

cability of uncertainty management and utility theory in expert system development.

The program is approximately 600 lines long and serves as a prototype inference en-

gine of a decision analytic reasoner. The program accesses a separately loadd i'llt

which serves as the knowledge base of the particular problem domain. This knowl-

edge base contains the priors. the joint likelihood table, and the utility action-matrix.

The priors are the user provided values which are written in a scheme construct called

--priors". This is how the prior values .6, .2, .1, and .1 would be represented.

(define (priors)
,(.6 .2 .1 .1) )

The joint likelihood table is a QuattroTM generated file which has been altered

in order to fit into scheme syntax. This data file is labeled "likelihoods". Below is a

hypothetical example.

(define (likelihoods)
M(((() (1 2 3)) (.1 .1 .1 .1))
(((1) (2 3)) (.2 .6 .3 .4))

(((1 2 3) 0) (.02 .024 .042 .024)) ))

The action-matrix defines the utility values which the expert has determined

for each action. The list is constructed with the different actions representing the

different rows and the possible hypotheses of the problem domain representing the
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different columns. Below is how the action matrix is represented in the knowledge

base.

HI H2 H3 H4

Al 100 10 20 15 (define (action-matrix)

A2 5 1 (100 10 20 15)

5 100 6 30 (5 100 6 30)

A3 7 0 so 10 10 (70 80 100 10)

(10 20 30 100) ))

A4 10 20 30 100

After loading TEST3.S and the appropriate file containing the priors, likeli-

hoods, and action-matrix values, the system is ready foi uoe. Delow is the step-by-

step process for using the program.

Step 1. type: pcs

This loads scheme program into the computers resident memory. (This assumes

the scheme program is resident on the default drive.)

Step 2. type: (load "a:test3.fsl")

This loads the fastload version of the TEST3.S from the floppy drive into the

scheme buffer.

Step 3. type: (load "a:knowledgebase")

This loads the user created knowledge base. This file name is whatever the

user has named it.

Step 4. type: (start)
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This starts the program, asking the user to indicate what evidence he has

observed. First, enter the evidence values that were observed as true and the belief

in that evidence. Then enter the evidences that were observed as false and their

corresponding belief value.

T F
Ml( .3)(2 .1))((4 .1)(7 .8)))

In the above example, Evidence 1 and 2 were observed as true and 4 and 7

as false. With a belief in Evidence 1 of .3 and a belief in Evidence 2 of .1. The

associated beliefs in Evidences 4 and 7 are .1 and .8, respectively. The -true' set

consists of the subsets (1 .3) and (2 .1), while the false subsets are (4 .1) and (7 .8).

Pic:'e note that there must be a space in between the evidence and the belief value.

The belief values can range from 0 to 1.

After the values are entered, hit the return key. The program will now take the

tintered values and, utilizing a combination of Bayes' Theorem and decision theory,

calculate the appropriate utility values for each action. The action yielding the

highest utility will be recommended by the system as the rational course of action.

A normalized list will also output the percentage of utility associated with each

action. Action values are vertically output in ascending order starting from the top.

Al 10

A2 30

A3 40

A4 20

Do action 3
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In order to validate the accuracy of the output data, several data runs were

accomplished testing the approximately 35 subroutines that are accessed during the

programs operation.

The program's calculations can be broken up into 6 major steps. Following is

a short description of each step. Step I breaks the entered evidences into all possible

subset combinations.

(i.e., (1 2 3) -> (()(1 2 3))

((1) (2 3))
((2) (1 3))
((3) (1 2))
((1 2) (3 )
((1 3) (2))
((2 3) (1))
((1 2 3)0) ).

Step 2 takes each component list and retrieves the associated likelihood values

from the joint likelihood matrix.

(i.e., (1 2 3) -> (0(1 2 3)) (.1 .1 .1 .1)
((1) (2 3)) (.2 .6 .3 4)
((2) (1 3)) (.5 .1 .2 .2)
((3) (1 2)) (.2 .4 .7 .3)
((1 2) (3)) (.1 .06 .06 .08)
((1 3) (2)) (.04 .24 .21 .12)
((2 3) (1)) (.1 .04 .14 .06)
((1 2 3)()) (.02 .024 .042 .024).

Step 3 takes each component list and calculates the corresponding belief vector.

This vector is determined by the placement of the evidences in the sublist and their

original placement as entered by the user. For example, if the values are in the same

category (i.e., true or false) as entered by the user, the entered belief values are used.

B-4



If the values are in opposite list, the entered belief value substracted from 1 is used.

For exanple if the entered list is

T F
<original user entered list> (((1 .3)(2 .6))((3 .8)))

<Example T F resultant vector
component sublist> ((1 2) (3)) (.3)(.6)(.8) = (.3)(.6)(.8)

((2 3) (1)) (.6)(i-.8)(i-.3) = (.6)(.2)(.7)

These belief vectors are multiplied by the likelihood values in ordc- to give

their respective weights.

<Example HI H2 H3 H4
component sublist> ((1 2) (3)) (.1 .0 .06 .08) * (.144)

((2 3) (1)) (.1 .04 .14 .06) * (.084)

The resultant likelihood values are:

HI H2 H3 H4
((1 2) (3)) (.0144 .00864 .00864 .01152)
((2 3) (1)) (.0084 .00336 .01176 .00504)

Step 4 adds all of the likelihood values together to get the total scaled likelihood

associated with each hypothesis. Though I am only showing two likelihoods, this

value would include all subset lists of the entered evidences.

H1 H2 H3 H4
((1 2) (3)) (.0144 .00864 .00864 .01152)
((2 3) (1)) (.0084 .00336 .01176 .00504)

.0228 .0348 .0204 .01656

B-5



Step .5 multiplies each of the hypothesis likelihood values by its respective prior

in order to determine the posterior value (assume priors are (.6 .2 .1 .1)).

Hi H2 H3 H4

(1 2) (3) (.0228)(.6) (.0348)(.2) (.0204)(.1) (.01656)(.1)

(1 2) (3) (.01368) (.00696) (.00204) (.001656)

Step 6 takes the resultant posteriors and does a dot product with each row of

the action-matrix in order to determine the utility values.

[.01368 .00696 .00204 .001656] * 1 100 10 20 15 i = 1.50324

I 5 100 6 30 1 = .82632

I 70 80 100 10 I = 1.73496
I 10 20 30 100! = .5028

The largest value is selected and the associated action is recommended. In this

case it is Action 3. The values are also normalized and the relative percentage of

each utility value is output.

Presently as it stands, the hypotheses and actions are limited to 4 values while

there is no limit on the number of evidences which can be used in the knowledge base.

This thesis used 7 evidences which meant during each run, 128 different sublists were

manipulated. As the number of evidences increases, the time determining the output

will vary due to the factor of two that is added for each evidence.

B-6



Appendix C. Scheme Code

Decision-Analytic Code. The language is SCHEME
Written by Grady Elliott for Thesis work. 1 - 8 Oct 1989

PRIORS
These are the prior values of the hypothesis set. They
should be put into the particular problem data set.

;(define (priors)
; '(.6 .2 .1 .1))

LIKELIHOODS
This shows the form in which the likelihood values from

; the p{e}Ih need to entered in. The likelihoods show be
put into the particular problem data set. (These have been
commented out.)

(define (likelihoods)

((() (1 2 3)) (.2 .1 .1 .1))
(i() (2 3)) (.2 .6 .3 .4))

(((2) (1 3)) (.5 .1 .2 .2))

(((3) (1 2)) (.2 .4 .7 .3))

(((1 2) (3)) (.1 .06 .06 .08))
(((1 3) (2)) (.04 .24 .21 .12))
(((2 3) (1)) (.1 .04 .14 .06))

(((1 2 3) 0) (.02 .024 .042 .024)) ))

(define (values)

'(((1 .9)(2 .8))((3 .7)(4 .6))) )

ACTIOI-MATRIX
;; This is the action utility diagram. Each ro, is for a
;; particular action, I - 4. Use particular matrix for each
;; problem data set. (Example below has been commented out)

;(define (action-matrix)

'((oo 10 20 15)
(5 100 6 30)

(70 80 100 10)
(tO 20 30 100)))
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;; ACTION
This procedure recommends I of 4 actions depending upon
the utility values of the results.

(define (action 1st)

(cond ((null? 1st) ')
((equal? (car 1st) (car (reverse (s.zt 1st))))
(display "Do action 11))

((equal? (cadr ist) (car (reverse (sort 1st))))
(display "Do action 2"))

((equal? (caddr 1st) (car (reverse (sort ist))))
(display "Do action 3"))

(else
(display "Do action 4"))))

-------------------------------------------------------------

; ADD
This procedure adds values in a vector to obtain the total
resultant vklues. Used when all evidence is not observed.
----------------------------------------------------------

(define (add lstl lst2)
(cond ((null? lst2) istl)

(else
(append(list (+ (car istl) (car iat2)))

(add (cdr istl) (cdr lst2))))))

START (BGN)
This procedure starts the whole program.
Ask user to input the evidences he observed and the
belief in that evidence.

(define (start)
(bgn)
(re!.t))

(define (bgn)
(window-clear 'console)

(window-delete epercent-window*)
(display "Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6))) ")

(newline)
(neuline)
(let* ((inputl (read))

(input2 inputl))
(syprop input2)
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(total
(posterior

(bigaud
(big-build

(d-total(do-all(flat(extract inputi))) (likelihoods))
(extract inputi))) (priors)) (action-matrix)) )

BIG-ADD
This procedure is used to compute total values of the

1likelihood vectors after the BIG-BUILD routine. It takes
one list of many vectors and outputs a single vector
with the sum of all the sublist vectors.
C2631 (bigadd '((1 2 3) 01 2 3) (1 2 3))

> (3 6 9)

(define (bigadd 1st)
(cond ((null? 1st) '0)

(else
(add (car 1st) (bigadd (cdr 1st))))))

BIG-BUILD
This procedure is used on the output of D-TDTAL. Its
purpose is to output a list of vectors which have
been adjusted to the value determined by the DETERMINE and
MULT procedures. It accesses the SCALAR. routine and BIG2

(define (bib-build lst goodlat)
(cond ((null? 1st) '0)
(else

(append
(list (scalar (cadar let) (big2 (caar lst) goodlst)))
(big-build (cdr 1st) goodlsrti))))

(define (big2 isti 2.3t2)
(cond ((null? isti)')
(else
(mult (determine Istl 1t2)
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BUILD

This procedure builds the double list needed by joining the

incoming list, with a list of the reverse of the members in

in each li,' (((1) (2 3)) ((3) (5 6)) + ((2 3)(1)) (S 6)

(3))

,define (build 1st) ;builds double the list reversing the order

Ccond ((null? ist) ')
(else

(append ist (flip ist)))))

CHECK
(old) This procedure was used when I initially didn't take

incertainty of evidence into consideration. It adds tht

vector values if the evidence meets criteria.

(define (check latl lst2)

(cond ((null' lst2) '0)
((subset' Istl (caaar ist2)) (add (cadar ist2) (check lsti (cdr ist2))))

(else

(check lstl (cdr lst2)))))

CLIP

;This procedure builds sets of head to tail throughout the list

(1 2 3 4 5 6) => (1 6) (2 5) (3 4)

(define (clip ist)

(cund ((null? ist) '0)
(else

(append

(list

(append (list (car ist)) (list (car (reverse ist)))))

(clip (remove (cdr lst)))))))

D-CHECK

This procedure used to check to if I can build proper
subset list (i.e. (evidences + (summed likelihoods))
car of the do-all list and likelihood list. It accesses

the NEWCHECK procedure.

(define (d-check lstl lst2)
(append (list lail) (list (newcheck latl lst2)) ))
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D-TOTAL

This procedure produces the hugh list of the different

combinations with the sum total of the likelihood values
generated in the NEWCHECK procedure.

(define (d-total Istl lst2)

(cond ((null? isti) '()
(else

(append

(list (d-check (car lstl) ist2)) (d-total (cdr lstl)

lt2)))))

EELETE
This procedure deletes a member from a list.

(define (delete x ist)

(cond ((null? 1st) '0)
((equal? x (car ist)) (delete x (cdr ist)))

(else

(cons (car 1st) (delete x (cdr 1st)) ))))

DETERMINE

This procedure checks to see if the placement of the
values of the list in question, matches that of the list

created by the user with the read statement. It determines
the values of the evidence that are going to be used to
multiply by the posterior values. These values are retrieved

from the property list which has assigned the values
depending upon the user read input. If placement doesn't

match, then one minus the value is given. A list of the

evidence vector is output. DETERMINE2 is consulted.

(define (determine let goodlat)

(append (determine2 (car lot) (car goodlet))
(determine2 (cadr Ist) (cadr goodlst))))

(define (determine2 lst goodlst)
(cond ((null? 1st) '())

((null? (car 1st)) '())
((member (car 1st) goodlst)

(cons (getprop 'grady (car lst))

(determine2 (cdr lst) goodlst)))

(else
(cons (- 1 (getprop 'grady (car lst)))

(determine2 (cdr 1st) goodlst))) ))
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DO-ALL combines the output of the BUILD, CLIP, and SUBSETS
routines. It gives a list broken downx into all of its subsets

(defize (do-all 1st)

(cond ((null? 1st) '0)
(else

(build (clip (subsets 1st))))))

DOT
This procedure figures the dotproduct of two one-row vectors

(define (dot lstl lst2)
(cond ((null? lsti) 0)

((null? lst2) 0)
(else
(+ (* (car lstl) (car lst2)) (dot (ccdr lstl) (cdr lst2))))))

DOTP
This procedure figures the dot product of a I one-row vector
and a multirow matrix. Produces a matrix list.

(define (dotp lstl lst2)

(cond ((null? lstl) '0)
((null? lst2) ')

(else
(append (list N'~ot lstl (car lst2))) (dotp lstl (cdx lst2))))))

EXTRACT
This procedure is used to generate the list of evidences
without the subjective belief assessments.
( ((1 .9) (2 .8)) ((3 .4) (4 .7))) => (01 2) (3 4))
It accesses the EXTKACT2 procedure.

(define (extract 1st)
(append (list (extract2 (car 1st)))

(list (extract2 (cadr 1st)))

(define (extract2 1st)
(cond ((null? 1st) 'C)

(else

(cons (caar 1st)
(extract2 (cdr 1st)) ))
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FLAT

This procedure links the FLATTEN and FLATTEN2 procedures

together.

(define (flat 1st)

(flatten2 (flatten 1st)))

FLATTEN
This procedure flattens out a list of many sublist into
one major list. ((1)(2)(3)) => (1 2 3)

(define (flatten 1st)
(cond ((null? 1st) '()

((atom? (car 1st))
(append (list (car ist)) (flatten (cdr Ist))))

(else
(append (flatten (car 1st)) (flatten (cdr 1st))) )))

FLATTEN2
This procedure is used to alleviate problems which arise

* when the flattened list has nil as a member. (i.e.
'(1 2 ). Needs to be done before the DO-ALL procedure.
This is for cases when either no evidence was true or no

; evidence was false.

(define (flatten2 1st)
(cond ((null? 1st) '())

((member '() 1st) (delete '() 1st))
(else

Is)))

FLIP
;; This procedure reverses the members inside of a list.

((1 2) (3)) = > ((3) (1 2))

(define (flip set)
(cond ((null? set) 'C))

(else
(append

(list (reverse (car set))) (flip (cdr set))))))
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LARGEST
This procedure finds the largest number in a list
hopefully I will be able to use this in the ACTION
routine.

(define (largest 1st)
(cond ((null? 1st)')

((null? (cdr 1st)) (car 1st))
((> (car lst) (cadr lst)) (largest (cons(car 1st) (cddr
lst)

(else
(largest (cdr 1st)))))

MULT
This procedure takes the members of a vector and multiplies
them by one another to get the SCALAR value.
C3] (mult '(2 3 4)) => 24

(define (mult 1st)
(cond ((null? lst) 1)

(else
(* (car 1st) (mult (cdr 1st)))

MYPROP
;This builds a property list which keeps track of the
belief of each of the evidences. It accesses HYPROP2

;[39) (myprop '( ((1 .9) (2 .8)) ((3 .7) (4 .2))))
;;returns => (0.9 0.8 (4 0.2))
[42) (getprop 'grady 3)
0.7

[43) (getprop 'grady 1)
;; 0.9

[44) (getprop 'grady 2)
0.8
[45) (getprop 'grady 4)
0.2

(define (myprop 1st)
(append (3yprop2 (car let)) (myprop2 (cadr 1st))))

(define Cmyprop2 1st)
(cond ((null? lst) ')

(else
(cons (putprop 'grady (cadar 1st) (caar 1st))

(myprop2 (cdr lst))))))
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*NEWCHECK
This procedure adds vector values it the evidence meets
the correct position criteria. LST2 is LIKELIHOODS values

(define (neucheck isti lst2)
(cond ((null? lst2) '0)
((and (subset? (car isti) (caaar lst2)) (subset? (cadr lsti) (cadaar lst2))

(add (cadar lst2) (newcheck lstl (cdr lst2))))
(else
(newcheck lstl (cdr lst2)))

*PERCENT
;This procedure is used to tell the percentage each
member makes up of the list. It accesses the PERCENT2
and SUMLIST procedures.
i.e. (percent '(2 2 2 2)) => (.25 .25 .25 .2S)

(define (percent 1st)
(let ((total (sumlist 1st)))

(percent2 lst total))

(define (percent2 1st lst2)
(cond ((null? 1st) 10)

(else
(cons (/(car lst) lst2)

(percent2 (cdr 1st) lst2)))))

;POSTERIOR
*This procedure takes the output from BIGADD and figures
;out the posterior values of each of the hypotheses. This
;is the vector that will be used in the calculation of
;the utility values through the action matrix.

(define (posterior lati lst2)
(cond ((null? lstl) '0))

((null? lst2) '0)
(else

(append (list (* (car isti) (car lst2)) (posterior (cdr
lstl) (cdr lst2))))))
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;;PREFIX
;; This procedure is used to help fathom all the subsets of

a particular list

(define (prefix elt 1st) ;a first element to help expand set

(cond ((null? 1st) '0)
(else

(cons (cons elt (car lst))
(prefix elt (cdr lst)) ))))

REMOVE
This procedure takes the tail off of a list. This routine is

;; accessed by the CLIP to build the needed lists.

(defi.ne (remove lst)
(cond ((null? lst) '()

(else
(reverse (cdr (reverse ist))) )))

SCALAR
;; This procedure is used to take the multiplication number

given by the DETERMINE and NULT and multiply it across the
;; the vector given the NEWCHECK procedure.

[105 (scalar '(1 2 3 4 5 6) 100)

;; (100 200 300 400 500 600)
;; Then this vector will be added with all of the SUBSETS vectors
;; which will finally be used in the POSTERIOR routine.

(define (scalar lst x)

(cond ((null? lst) '()
(else

(cons (* (car lst) x) (scalar (cdr lst) x)))))

;; SORT
;; This procedure sorts a list from lowest to highest values.

It accesses the INSERT procedure which places the sorted
;; values.

(define (sort 1st)
(cond ((null? let) '()

(else

(insert (car ist) (sort (cdr ist))) )))
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(define (insert x sorted-list)

(cond ((null? sorted-list) (list x))

((< x (car sorted-list)) (cons x sorted-list))
(else

(cons (car sorted-list) (insert x (cdr sorted-list))))))

SUBSET?
This procedure determines if sets are subsets of each other

(define (subset? lstl lst2)
(or (null? lstl)

(and (member (car lstl) lst2)

(subset? (cdr lstl) ist2))))

;; SUBSETS

;; This procedure finds all the subsets of a list.

;; It access the prefix routine.
;; (subsets '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

(define (subsets set) ;finds all subsets of a set of values

(cond ((null? set) (list nil))
(else
(append (subsets (cdr set))

(prefix (car set)
(subsets (cdr set)) )))))

SUMLIST

;; This procedure adds the members of the list to give the

;; total value. It is used in the PERCENT procedures.

;; (sumlist '(1 2 3 4)) => 10

(define (sualist lst)
(cond ((null? lst) 0)

(else
(+ (car let) (sualist (cdt let))))))
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;; TOTAL
;; This procedure takes the dot product of hypothesis set and
;; ACTION-MATRIX values and outputs action ap determined in the
;; ACTIOI routine.

(define (total lsti lst2)
(cond ((null? lstl) '0)

((null? lst2) '0)
(else
(vertprint (dotp lati lst2))

(window-set-size! *percent-window* 4 22)
(window-set-position! *percent-window* 6 22)
(window-clear *percent-window*)
(set-fluid! output-port *percent-window*)
(vertprint (percent (dotp ltl lst2)))

(set-fluid! output-port 'console)
(newline) (newline)
(action (dotp lsti lst2)))))

(define *percent-window* (make-window #f #t))

;; VERTPRIIT

;; This procedure vertically prints out a list.

(define (vertprint 1st)
(cond ((null? lst) *the-non-printing-object*)

(else
(print (car let))
(vertprint (cdr lst)))))

;; The following procedures were used as test procedures to
;; check and validate the code.

(define (small-action)

'((1 2 3 4)
(2 3 4 1)
(2 2 2 2)
(1 1 1 1)))

(define (test) ; test routine to determine if total routine worked
(print "Enter 4 values of the hypothesis set") ; with user input read
(total (read) (action-matrix))) ; statement.
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; GROUPLIST
; This is a practice hypothesis/likelihood table to check
numbers.

(define (grouplist)
'(((() (2 3)) (1 2 3 4))

(((2) (1 2)) (1 2 3 1))

(((1 2) (3)) (1 1 1 1)) ))

;; SMALL-ACTION

;; This is a practice action table to check numbers.

(define (small-action)

'((1 2 3 4)
(2 3 4 1)
(2 2 2 2)
(1 1 1 1)))
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Appendix D. GPS Knowledge Base

The fcllowing listing Is the knowledge base accessed by the DA reasoner (Test3.s).

The values used for the priors, likelihoods, and utilities are those provided by the

user, written in scheme syntax. The Quattro TM_ generated file was used as the source

for the likelihood values.

(define (priors)
'( 9766 0.001953 0.001953 0.01953)

(define (action-matrix)
'(100 200 lfl00 500)
(0 10000 0 500)
(40 1000 2000 3000)
(10 4000 200 5000) )

((()(1 2 3 4 5 6 7)) (1.04.-5 6.35.-B 1.1e-6 7.79.-B))
(((1) (2 3 4 5 6 7)) (0.010376 6.34.-S 1.1e-9 7.796-5))
(((2) (1 3 4 5 6 7)) (5.229-8 3.19.-la 9.87e-0S 3.92.-10))
(((3) (1 2 4 5 6 7)) (1.04e-8 6.35.-li 0.001096 7.8s-11))
(((4) (1 2 3 5 6 7)) (9.35.-S 6.28.-6 9.88e-6 7.72e-6))
(((5) (1 2 3 4 6 7)) (4.43.-S 7.3e-7 1.1.-10 1.96.-8))
(((6 (0 2 3 4 5 7)) (1.04e-9 2.71.-7 1.1e-10 1.59e-9))
(((7) (0 2 3 4 5 6)) (8.5e-6 8.76.-B 1.16-9 7.72e-6))
(((1 2) (3 4 5 6 7)) (5.21.-S 3.19e-7 9.88.-8 3.919-7))
(((1 3) (2 4 5 6 7)) (1.04.-S 6.35.-B 1.10-6 7.79e-B))
(((1 4) (2 3 5 6 7)) (0.093383 0.006276 9.89e-9 0.007707))
((( 5) (2 3 4 6 7)) (0.044234 0.000729 1.1s-13 1.95e-OS))
(((1 6) (2 3 4 5 7)) (1.04e-06 0.00027 1.10-13 1.69.-OB))
(((1 7) (2 3 4 5 6)) (0.008489 8.75.-O6 1.1s-12 0.007707))

(((2 3) (1 4 5 6 7)) (5.22e-il 3.19e-13 0.098584 3.92e-13))
(((2 4) 01 3 5 6 7)) (4.70-7 3.16.-B 0.000888 3.88e-08))
(((2 5) (1 3 4 6 7)) (2.23e-7 3.67e-9 9.87s-9 9.79s-1l))
((2 6) (1 3 4 5 7)) C5.22*-i2 1.36.-9 9.870-9 7.99*-12))
((2 7) (1 3 4 5 6)) (4.27.-8 4.4*-10 9.88o-8 3.88e-B))
(((3 4) (1 2 5 6 7)) (1.7e-7 2.84.-9 0.009877 7.67e-7))
((3 5) 01 2 4 6 7)) (4.430-8 7.3e-10 1.1e-7 19.l)
(((3 6) (1 2 4 5 7)) (i.04*-12 2.71.-jO i.l.-7 1.69e-12))
((3 7) 01 2 4 5 6)) (8.51e-9 8.77*-li 1.1@-8 7.72s-9))
((4 5) (1 2 3 6 7)) (0.000399 7.22.-S 9.88.-l0 1.93.-6))
(((4 6) (1 2 3 5 7)) (9.35.-g 2.68.-S 9.88e-la i.57o-7))
((4 7) (1 2 3 5 6)) (7.65.-S 8.68e-6 9.89*-9 0.000764))
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(((S 6) (1 2 3 4 7)) (4.43e-9 3.11e-6 l.le-14 3.98.-la))
(((S 7) (1 2 3 4 6)) (3.62.-S 1.01e-6 i.i,-13 1.93e-6))

(((6 1(1 2 3 4 5)) (8.5.-10 3.74*-7 1.16-13 1.57e-7))
(((1 2 3) (4 5 6 7)) (5.22e-8 3.19e-10 9.87.-S 3.92.-la))
(((l 2 4) (3 5 6 7)) (0.000469 3.150-5 8.89.-7 3.87,-5))
(((l 2 5) (3 4 6 7)) (0.000222 3.66e-6 9.88o-12 9.78e-8))
(((1 2 6) (3 4 5 7)) (5.2l.-9 1.36e-6 9.88e-12 7.98.-9))

(((1 2 7) (3 4 5 6)) (4.27e-5 4.4e-7 9.89.-i1 3.87s-5))
(((1 3 4) (2 5 6 7)) (9.35.-S 6.28e-6 9.88s-6 7.72e-6))

(((1 3 5) (2 4 6 7)) (4.43,-S 7.36-7 1.16-10 1.960-8))
(((1 3 6) (2 4 5 7)) (1.04e-9 2.710-7 1.le-l0 1.59e-9))
(((l 3 7) (2 4 5 6)) (8.Se-6 8.76e-8 l.le-9 7.72e-6))
((( 4 5) (2 3 6 7)) (0.398108 0.072174 9.89e-13 0.001927))

((( 4 6) (2 3 5 7)) (9.34e-6 0.026766 9.890-13 0.000157))

((( 4 7) (2 3 5 6)) (0.076405 0.008667 9.9e-12 0.763028))
(((1 5 6) (2 3 4 7)) (4.42o-6 0.003108 1.1,-17 3.97e-7))
(((l 5 7) (2 3 4 6)) (0.036192 0.001007 1.1e-16 0.001927))
(((l 6 7) (2 3 4 5)) (8.49e-7 0.000373 l.le-16 0.000157))
(((2 3 4) (1 5 6 7)) (4.7e-10 3.16.-il 0.887255 3.88.-il))
(((2 3 5) (1 4 6 7)) (2.23e-1a 3.67e-12 9.86e6 9.8e-14))
(((2 3 6) (1 4 5 7)) (5.23e-15 1.36*-12 9.86e-6 8.0e-15))
(((2 3 7) C, -. 6)j) (4.27.-il 4.4ie-13 9.87.-S 3.88e-11))
((2 4 5) (1 3 6 7)) (2.0.-6 3.63e-7 8.880-8 9.696-9))
(((2 4 6) (1 3 5 7)) (4.7.-il 1.35*-7 8.88.-8 7.91e-10))

(((2 4 7) (1 3 5 6)) (3.84.-7 4.36.-8 8.89e-7 3.84e-6))
(((2 5 6) (1 3 4 7)) (2.23.-ll 1.66e-8 9.87e-13 2.0e-12))

(((2 5 7) (1 3 4 6)) (1.82e-7 5.06e-9 9.88@-12 9.6ge-9))
(((2 6 7) (1 3 4 5)) (4.27e-12 1.88*-9 9.88e-12 7.91.-la))

(((3 4 5) (1 2 6 7)) (3.99.-? 7.23.-S 9.87a-7 1.930-9))
(((Z 4 6) (1 2 5 7)) (9.36e-12 2.68.-8 9.87.-7 1.58.-l0))

(((3 4 7) (1 2 5 6)) (7.66.-8 8.68.-9 9.88e-6 7.6S.-7))
(((3 5 6) (1 2 4 7)) (4.43e-12 3.110-9 1.16-11 3.98e-13))

(((3 5 7) (1 2 4 6)) (3.63.-S 1.014-9 1.1.-10 1.93e-9))
(((3 6 7) (1 2 4 5)) (8.5le-l3 3.74.-l0 1.10-10 1.58.-l0))

(((4 5 6) (1 2 3 7)) (3.99.-S 0.000308 9.88e-14 3.9, .-8))

(((4 5 7) (1 2 3 6)) (0.000326 9.98.-S 9.890-13 OA'00191))

((4 6 7) (1 2 3 5)) (7.650-9 3.7.-S 9.89*-13 1.56.-S))
(((5 6 7) (1 2 3 4)) (3.62e-9 4.36-6 1.1.-iT 3.94.-8))

M(( 2 3 4) (5 6 7)) (4.7e-7 3.16.-S 0.000888 3.88.-a))
(((l 2 3 5) (4 6 7)) C2.23e-7 3.67*-9 9.87e-9 9.79.-li))

(((1 2 3 6) (4 5 7)) (5.22e-12 1.36e-9 9.87s-9 7.99e-12))

(((l 2 3 7) (4 5 8)) (4.27.-S 4.4e-10 9.88.-S 3.88.-8))
(((l 2 4 5) (3 6 7)) (0.002001 0.000363 8.89*-il 9.68.-6))

(((l 2 4 6) (3 S 7)) (4.69.-S 0.000134 8.89.-li 7.90-7))

(((l 2 4 7) (3 5 6)) (0.000384 4.36.-S 8.9.-10 0.003834))
(((1 2 6 8) (3 4 7)) (2.22.-S i.56*-S 9.88.-16 2.0.-9))
(((1 2 5 7) (3 4 6)) (0.000182 5.06o-6 9.89.-iS 9.680-6))
(((1 2 6 7) (3 4 5)) (4.27.-9 1.88*-6 9.89.-1S 7.9e-7))
(((l 3 4 5) (2 6 7)) (0.000399 7.22.-S 9.88e-10 1.93e-6))
(((1 3 4 6) (2 6 7)) (9.36*-9 2.68.-S 9.88e-10 1.570-7))

(((1 3 4 7) (2 5 6)) (7.66e-6 8.68o-6 9.890-9 0.000764))

D-2



((( 3 5 6) (2 4 7)) (4-43a-9 3.lie-6 1.10-14 3.98e-10))
(((l 3 5 7) (2 4 6)) (3.62.-S 1.019-6 l.le-13 1.93e-6))

((U1 3 6 7) (2 4 5)) (8.-e1 3.749-7 1.10-13 1.57o-7))
((( 4 5 6) (2 3 7)) (3.98e-5 0.307689 9.89e-17 3.93.-S))
((( 4 5 7) (2 3 6)) (0.325725 0.099689 9.9s-16 0.190757))

((Ul 4 6 7) (2 3 5)) (7.84.-8 0.036948 9.9o-16 O.015572))
(((1 5 8 7) (2 3 4)) (3.62e-6 0.004292 1.10-20 3.930-6))
(((2 3 4 5) (1 6 7)) (2.0*-9 3.63.-l0 8.87.-S 9.7e-12))
(((2 3 4 6) (1 5 7)) (4.7e-14 1.35*-10 8.87.-S 7.92*-13))

(((2 3 4 7) (1 5 6)) (3.85e-10 4.36.-li 0.000888 3.84e-09))

(((2 3 5 6) (1 4 7)) (2.23e-14 1.56.-il 9.86e-la 2.0.-is))
(((2 3 5 7) (1 4 6)) (1.82s-ia 5.07e-12 9.870-9 9.7e-12))
(((2 3 6 7) (1 4 5)) (4.28e-15 1.88e-12 9.870-9 7.92e-13))
(((2 4 5 6) (1 3 7)) (2.0e-l0 1.550-8 8.88s-12 1.98.-10))
(((2 4 6 7) (1 3 6)) (1.64e-6 5.01.-7 8.89.-il 9.6a-7))
(((2 4 6 7) (1 3 5)) (3.84.-li 1.86e-7 8.8g.-lI 7.83.-8))
(((2 5 6 7) (1 3 4)) (1.820-11 2.16e-8 9.880-16 1.98.-la))
(((3 4 5 6) (1 2 7)) (3.99.-il 3.08e-7 9.87.-il 3.94.-li))
(((3 4 5 7) (1 2 6)) (3.26.-7 9.990-8 S.88*-10 1.916-7))
(((3 4 6 7) (1 2 5)) (7.66e-12 3.7.-B 9.88.-la 1.58.-8))
(((3 5 6 7) (1 2 4)) (3.63e-12 4.3s-9 Ile1.4 3.94.-il))
(((4 5 6 7) (1 2 3)) (3.26e-8 0.000425 9.89e-17 3.90-e))

((( 2 3 4 5) (6 7)) (2.0e-6 3.63o-7 8.88.-a 9.690-9))

Ml( 2 3 4 6) (5 7)) (4.7e-1l 1.330-7 8.88.-B 7.916-10))

(((1 2 3 4 7) (S 6)) (3.84.-7 4.36.-B 8.8g.-7 3.840-6))

((( 2 3 5 6) (4 7)) (2.23e-11 1.56e-B 9.87e-13 2.0e-12))
(((1 2 3 5 7) (4 6)) (1.82e-7 5.06e-9 9.880-12 9.69.-9))
(((l 2 3 6 7) (4 5)) (4.27e-12 1.88e-9 9.88e-12 7.91.-la))

(((1 2 4 S 6) (3 7)) (2.0.-7 0.001546 8.89.-iS 1.98a-7))
(((1 2 4 5 7) (3 6)) (0.001837 0.000501 8.9s-14 0.000959))
(((1 2 4 6 7) (3 5)) (3.84.-8 0.000186 B.Q.-14 7.83.-S))
((( 2 5 6 7) (3 4)) (4.04e-12 3.01.-S 9.890-20 3.99.-9))
(((1 3 4 5 6) (2 7)) (3.996-8 0.000308 9.88*-14 3.940-8))

((l 3 4 5 7) (2 6)) (0.000326 9.98.-S 9.89*-13 0.000191))
(((1 3 4 6 7) (2 6)) (7.65o-9 3.7.-6 9.896-13 1.566-5))
(((1 3 5 6 7) (2 4)) (3.62.-9 4.3*-6 1.lo-17 3.94.-B))
(((1 4 5 6 7) (2 3)) (3.26.-S 0.424903 9.9s-20 0.003893))
(((2 3 4 5 6) (1 7)) (2.0e-13 1.5.e-g 8.870-9 l.98.-13))

(((2 3 4 5 7) (1 6)) (1.64o-9 5.02.-la 8.88.-B 9.6.-la))

(((2 3 4 6 7) (1 5)1) C3.86.-14 1.6-08.88.-B 7.84.-il))

(((2 3 5 6 7) (1 4)) (1.82e-14 2.16.-li 9.87o-13 1.98e-13))

(((2 4 5 6 7) (1 3)) (1.64e-1a 2.14e-6 8.89e-iS 1.98.-B))
(((3 4 5 6 7) (1 2)) (3.26.-il 4.26e-7 9.88*-14 3.9o-9))
Ml( 2 3 4 5 6) (7)) (2.0.-la 1.56e-B 8.88e-12 1.98.-la))
(((1 2 3 4 5 7) (6)) (1.64.-S 5.016-7 8.89.-li 9.6.-7))

(((1 2 3 4 6 7) (6)) (3.84.-Il 1.86e-7 8.89.-il 7.83.-8))
Ml( 2 3 S 6 7) (4)) (1.82.-li 2.16.-B 9.88*-16 1.98.-l0))
(((l 2 4 5 6 7) (3)) (1.64e-7 0.002135 8.9s-lB 1.96.-B))
((( 3 4 S 6 7) (2)) (3.26.-B 0.000425 9.89.-17 3.9e-B))

(((2 3 4 S 6 7) (1)) (1.64o-13 2.14*-9 8.88e-12 1.96.-li))

(((l 2 3 4 5 6 7)()) (1.64.-la 2.14.-B 8.89.-iS 1.96.-B)) )
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Appendix E. Quattro Data

Fhe following data was generated using the commercial software spreadsheet

Qiattro'". The P(EIH) matrix and the P(-EIH) matrix were developed from inputs

provided by the expert. The P({E}UH) is a combination of both the P(E!H) arid P( -

F1 H i matrices and is the knowledge base accessed by the decision-a;-alvtic reasutr,r.

P(EIH) P(-E(H)

1 0.999 0.999 0.001 0.999 0.001 0.001 0.999 0.101

2 0.005 0.005 0.989 0.005 0.996 0.995 0.011 0.995

3 0.001 0 001 0.999 0.001 0.999 0.999 0.001 0.999
4 0.9 0.99 0.9 0.99 0.1 0.01 0.1 0.01

5 0.81 0.92 0.0001 0.2 0.19 0.08 0.9999 0.3

6 0.0001 0.81 0.0001 0.02 0.9999 0.19 0.9999 0.98

7 0.4S .58 0.001 0.99 0.55 0.42 0.999 0.3

12 0.004995 0.004995 0.000989 0.004995 0.000995 0.000995 0.010989 0.000995

13 0.000999 0.000999 0.000999 0.000999 0.000999 0.000999 0.000999 0.000999

14 0.8991 0.98901 0.0009 0.98901 0.0001 IE-05 0.0999 1E-05
15 0.80919 0.91908 1E-07 0.1998 0.00019 8E-05 0.9989 0.0008
16 9.99E-05 0.80919 1E-07 0.01998 0.001 0.00019 0.9989 0.00098

17 0.44955 0.57942 1E-06 0.98901 0.00055 0.00042 0.998001 lE-OS

23 SE-06 SE-06 0.988011 SE-08 0.994005 0.994005 1.1E-05 0.994005

24 0.0045 0.00495 0.8901 0.00495 0.0995 0.00995 0.0011 0.00995

25 0.0040S 0.0046 9.89E-05 0.001 0.18905 0.0796 0.010999 0.796

26 SE-07 0.00405 9.89E-05 0.0001 0.9949 0.18905 0.010999 0.9751

27 0.00225 0.0029 0.000989 0.00495 0.54725 0.4179 0.010989 0.00995

34 0.0009 0.00099 0.8991 0.00099 0.0999 0.00999 0.0001 0.00999

35 0.00081 0.00092 9.99E-05 0.0002 0.18981 0.07992 0.001 0.7992

36 1E-07 0.00081 9.99E-O 2E-06 0.9989 0.18981 O.OC1 0.97902

37 0.00045 0.00058 0.000999 0.00099 0.54945 0.41958 0.000999 0.00999

45 0.729 0.9108 9E-05 0.198 0.019 0.0008 0.09999 0.008

46 9E-06 0.8019 9E-05 0.0198 0.09999 0,0019 0.09999 0.0098

47 0.405 0.5742 0.0009 0.9801 0.055 0,0042 0.0999 0.0001
56 8.1E-06 0.7462 IE-08 0.004 0.189981 0.0152 0.9998 0.784
57 0.3645 0.5336 1E-07 0.198 0.1045 0.0336 0.9989 0.008
67 4.SE-05 0.4698 IE-07 0.0198 0.549945 0.0798 0.9989 0.0098

123 5E-0 SE-08 0.000988 5E-0 0.000994 0.000994 1.1E-05 0.000994
124 0.004496 0.004945 0.00089 0.004945 9.95E-05 9.95E-06 0.001099 9.95E-06

125 0.004046 0.004595 9.89E-08 0.000999 0.000189 7.96E-05 0.010988 0.000796
126 SE-07 0.004046 9.89E-08 9.99E-06 0.000995 0.000189 0.010988 0.000975

127 0.002248 0.002897 9.89E-07 0.004946 0.000647 0.00418 0.010978 9.95E-06
134 0.000899 0.000989 0.000899 0.000989 9.99E-06 9.99E-06 9.99E-05 9.99E-06
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135 0,000809 0.000919 9.99E-08 0.0002 0.00019 7.99E-05 0.000999 2 20?';9
136 9.99E-08 0.000809 9.99E-08 2E-05 0.000999 0.00019 0.000999 0 00:979
137 0.00045 0.000579 9.99E-07 0.000989 0.000549 0.00042 0.000998 9.99E-:6

145 0.728271 0.909889 9E-08 0.197802 1.9E-05 8E-07 0.09989 3E-26
146 8.99E-05 0.801098 9E-08 0.01978 1E-04 1.9E-06 0.09989 9.EE-:6

147 0.404595 0.573326 9E-07 0.97912 5.5E-05 4.2E-06 0.0998 :'--7

156 8.09E-05 0.744455 1E-11 0.003996 0.00019 1.52E-05 0.9988 0.CCO784

157 0.364136 0.533066 1E-10 0.197802 0.000105 3.36E-05 0.997901 8E-:

167 4.5E-05 0.46933 1E-10 0.01978 0.00055 7.98E-05 0.997901 9.33-2-3

234 4.SE-06 4.95E-06 0.88921 4.95E-06 0.0994 0.00994 1.1E-06 0.0:994
235 4.05E-06 4.6E-06 9.88E-05 1E-06 0.188861 0.07952 1.1E-05 079-z:4

236 5E-10 4.05E-06 9.88E-05 1E-07 0.993906 0.188861 1.1E-05 0 974:2S

237 2.25E-06 2.9E-06 0.000988 4.95E-06 0.546703 0.417482 1.1E-5 " .022.c4
245 0.003645 0.004554 8.9E-05 0.00099 0.018905 0.000796 0.0011 3-7--

246 4.5E-07 0.00401 8.9E-05 9.9E-05 0.09949 0.001891 0.0011 0.00975'

247 0.002025 0.002871 0.00089 0.004901 0.054725 0.004179 0.001099 9 9 E-25
256 4.05E-07 0.003726 9.89E-09 2E-05 0.189031 0.015124 0.010998 0.782?e

257 0.001823 0.002668 9.89E-08 0.00099 0.103977 0.033432 0.010988 0.CC796

267 2.25E-07 0.002349 9.89E-08 9.9E-05 0.547195 0.079401 0.010988 0.CC9 7 5:

345 0.000729 0.000911 8.99E-05 0.000198 0.018981 0.000799 IE-04 0.007992
346 9E-08 0.000802 8.99E-05 1.98E-05 0.09989 0.001898 IE-04 0.00¢79

347 0.000405 0.000574 0.000899 0.00098 0.054945 0.004196 9.99E-05 9.99£-C5

356 8.1E-08 0.000745 9.99E-09 4E-06 0.189791 0.015185 0.001 0 783216

357 0.000365 0.000534 9.99E-08 0.000198 0.104395 0.033566 0.000999 0.07992

367 4.5E-08 0.00047 9.99E-08 1.98E-05 0.549395 0.07972 0.000999 -29 79

456 7.29E-05 0.737748 9E-09 0.00396 0.018998 0.003152 0.09998 - 74
457 0.32805 0.528264 9E-08 0.19802 0.01045 0.000336 0.09989 8E-s

467 4.05E-05 0.465102 9E-08 0.019602 0.054994 0.000798 0.09989 9.8E-:5
567 3.6SE-05 0.432216 IE-Ai 0.00396 0.10449 0.006384 0.9988 00%4

1234 4.5E-06 4.95E-06 0.000889 4.95E-06 9.94E-05 9.94E-06 1.IE-06 9.94E--6
1235 4.05E-06 4.6E-06 9.88E-08 9.99E-07 0.000189 7.95E-05 1.1E-05 0 00?'95
1236 5E-10 4.05E-06 9.88E-08 9.99E-08 0.000994 0.000189 1.1E-05 0.000974
1237 2.25E-06 2.9E-06 9.88E-07 4.95E-06 0.000547 0.000417 1.1E-05 9.94E-¢6
1245 0.003641 0.004549 8.9E-08 0.000989 1.89E-05 7.96E-07 0.001099 7.96E-:6
1246 4.5E-07 0.004005 b.9E-08 9.89E-05 9.95E-05 1.89E-06 0.001099 9.75E-06

1247 0.002023 0.002868 8.9E-07 0.004896 5.47E-05 4.18E-06 0.001098 9,95E-0S
1256 4.05E-07 0.003722 9.89E-12 2E-05 0.000189 1.51E-05 0.010987 0 00278
1257 0.001821 0.002666 9.89E-11 0.000989 0.000104 3.34E-05 0.010977 7 9E7-:6
1267 2.25E-07 0.002347 9.89E-11 9.89E-05 0.0C0547 7.94E-05 0.010977 9 75E-2b
1345 0.000728 0.00091 8.99E-08 0.000198 1.9E-05 7.99E-07 9.99E-05 7 99E-:6
1346 8.99E-08 0.000801 8.99E-08 1.98E-05 9.99E-05 1.9E-06 9.99E-05 9 79E--6

1347 0.000406 0.000674 8.99E-07 0.000979 5.49E-05 4.2E-06 9.98E-05 9.99E-28
1356 8.09E-08 0.000744 9.99E-12 4E-06 0.00019 1.52E-05 0.000999 000083
1357 0.000364 0.000533 9.99E-11 0.000198 0.000104 3.36E-05 0.000998 7 99E-C6
1367 4.5E-08 0.000469 9.99E-11 1.98E-05 0.000549 7.97E-05 0.000998 9 79E-C6
1456 7.28E-05 0.73701 9E-12 0.003956 1.9E-05 1.52E-07 0.09988 7 84E-26
1457 0.327722 0.527736 9E-11 0.195824 1.05E-05 3.36E-07 0.09979 8E-28
1467 4.05E-05 0.464637 9E-11 0.019582 5.5E-05 7.98E-07 0.09979 9 8E-28
1567 3.64E-05 0.431784 1E-14 0.003956 0.000104 6.38E-06 0.997801 7 842-26
2345 3.65E-06 4.55E-06 8.89E-05 9.9E-A7 0.018866 0.000795 1.1E-06 0.C07952

2346 4.5E-10 4.01E-06 8.89E-05 9.9E-08 0.099391 0.001889 1.1E-06 3 0C9741

E-2



2347 2.03E-06 2. 87E-06 0.000889 4.9E-06 0.05467 0.004175 1.1E-06 9.94E-05
2356 4.052-10 3. 73E-06 9.88E-09 22-08 0.188842 0.015109 1.1-05 0.7793
2357 1.82E-06 2. 67E-06 9.88E-08 9.9E-07 0.103874 0.033399 1.15-05 0.007952

2367 2.25E-10 2.35E-06 9.88E-08 9.9E-08 0.546648 0.079322 1.1E-05 0.009741
2456 3.65E-07 0.003689 8.9E-09 1.98E-06 0.018903 0.000151 0.0011 0.007801
2457 0.00164 0.002641 8.92-08 0.00098 0.010398 0.000334 0.001099 7.96E-05
2467 2.03E-07 0.002326 8.9E-08 9.8E-05 0.05472 0.000794 0.001C99 9.75E-OS
2567 1.82E-07 0.002161 9.89E-12 1.98E-06 0.103967 0.006352 0.010987 0.007801
3456 7.29E-08 0.000738 8.99E-09 3.96E-06 0.018979 0.000152 IE-04 0.007832
3457 0.000328 0.000528 8.99E-08 0.000196 0.01044 0.00^336 9.99E-05 7.992-C5
3467 4.052-08 0.000465 8.99E-08 1.96E-05 0.05494 0.000797 9.992-05 9.79E-05

3567 3.65E-08 0.000432 9.99E-12 3.96E-06 0.104385 0.006378 0.000999 0.007832
4567 3.28E-05 0.427894 9E-12 0.00392 0.010449 6.38E-05 0.09988 7.84E-05
12345 3.642-06 4.552-06 8.89E-08 9.89E-07 1.89E-05 7.95E-07 1.1E-06 7.95E-06
12346 4.5E-10 4.01E-06 8.89E-08 9.89E-08 9.94E-05 1.89E-06 I.IE-06 9.74E-06
12347 2.02E-05 2.87E-06 8.89E-07 4.9E-06 5.47E-05 4.17E-06 1.1E-06 9.94E-08
12356 4.05E-10 3.72E-06 9.88E-12 2E-08 0.000189 1.51E-05 I.E-05 0.000779
12357 1.82E-06 2.67E-06 9.882-11 9.89E-07 0.000104 3.34E-OS 1.E-05 7.95E-06
12367 2.25E-10 2.35E-06 9.88E-11 9.89E-08 0.000547 7.93E-05 1.1E-05 9.74E-06
12456 3.64E-07 0.003685 8.9E-12 1.98E-05 1.89E-05 1.51E-07 0.001099 7.8E-06
12457 0.001639 0.002639 8.9E-11 0.000979 1.04E-05 3.34E-07 0.001098 7.96E-08
12467 2.02E-07 0.002323 8.9E-11 9 79E-06 5.47E-05 7.94E-07 0.001098 9.75E-08
12567 4.052-11 0.003015 9.89E-16 4E-07 0.000189 2.87E-06 0.010986 0.000764
13456 7.28E-08 0.000737 8.99E-12 3.96E-06 1.9E-05 1.52E-07 9.99E-05 7.832-06
13457 0.000328 0.000528 8.992-11 0.000196 1.042-05 3.36E-07 9.982-05 7.99E-08
13467 4.052-08 0.000466 8.99E-11 1.96E-05 S.495-06 7.972-07 9.98E-05 9.79E-08
13567 3.642-08 0.000432 9.992-15 3.96E-06 0.000104 6.382-06 0.000998 7.83E-06
14S67 3.28E-05 0,427466 92-15 0.003916 1.042-05 6.38E-08 0.09978 7.84E-08
23456 3.65E-10 3.69E-06 8.89E-09 1.98E-08 0.018884 0.000151 1.12-06 0.007793
23457 1.642-06 2.642-06 8.89E-08 9.82-07 0.010387 0.000334 1.12-06 7.955-05
23467 2.032-10 2.33E-06 8.89E-08 9.82-08 0.054665 0.000793 1.12-06 9.742-05
23567 1.82E-10 2.162-06 9.88E-12 1.98E-08 0.103863 0.006346 1.15-OS 0.007793
24S67 1.642-07 0.002139 8.92-12 1.96E-05 0.010397 6.352-05 0.001099 7.85-05
34567 3.282-08 0.000428 8.99E-12 3.92E-06 0.010439 6.38E-05 9.99E-05 7.83E-05
123456 3.64E-10 3.69E-06 8.89E-12 1.98E-08 1.89E-.05 1.51E-07 1.1E-06 7.79E-06
123457 1.642-06 2.642-06 8.89E-11 9.79E-07 1.04E-05 3.34E-07 1.1E-06 7.952-08
123467 2.02E-10 2.322-06 8.89E-11 9.79E-08 5.47E-05 7.932-07 1.1E-06 9.74E-08
123567 1.82E-10 2.16E-06 9.882-15 1.98E-08 0.000104 6.35E-06 1.1E-05 7.792-06
124667 1.64E-07 0.002137 8.92-16 1.962-05 1.04E-05 6.35E-08 0.001098 7.82-08
134667 3.28E-08 0.000427 8.99E-15 3.92E-06 1.04E-05 6.38E-08 9.98E-05 7.83E-08
234567 1.64E-10 2.14E-06 8.89E-12 1.96E-08 0.010386 6.35E-05 1.1E-06 7.79E-05

1234567 1.64E-10 2.14E-06 8.89E-15 1.96E-08 1.04E-05 6.35E-08 1.1E-06 7.79E-08
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P C {E}I H)

1,234567 0.010376 6. 34E-06 1. 1E-09 7.79E-05
2,134567 6.22E-08 3.19E-10 9.87E-06 3.92E-10
3,124S67 1.04E-08 6.355-11 0.001096 7.8E-11
4,123667 9.35E-05 6.28E-06 9.88E-06 7.72E-06

5,123467 4.43E-06 7.3E-07 1.15-10 1.9SE-08
6,123457 1.04E-09 2.71E-07 1.1E-10 1.595-09
7,123456 8.55-06 8.76E-08 1.15-09 7.72E-06
12,34687 5.21E-05 3.19E-07 9.88E-08 3.91E.-07
13,24667 1.04E-05 6.35E-08 1.1E-06 7.79E-08
14,23567 0.093383 0.006276 9.89E-09 0.007707
15,23467 0.044234 0.000729 1.1E-13 1.965-05
16,23457 1.04E-06 0.00027 1.15-13 1.59E-06
17,23458 0.008489 8.755-05 1.15-12 0.007707
23,14567 5.225-11 3.19E-13 0.098584 3.92E-13
24,13567 4.7E-07 3.16E-08 0.000888 3.88E-08
2S,13467 2.23E-07 3.67E-09 9.87E-09 9.79E-11
26,13457 5.22E-12 1.36E-09 9.875-09 7.995-12
27,13458 4.27E-08 4.45-10 9.885-08 3.885-08
34,12567 1.72-07 2.84E-09 0.009877 7.575-07
35,12467 4.435-08 7.35-10 1.15-07 1.95E-11
36,12457 1.04E-12 2.715-10 1.15-07 1.59E-12
37,12456 8.51E-09 8.77E-11 1.1E-06 7,72E-09
45,12367 0.000399 7.22E-05 9.88E-10 1.93E-06

46,12357 9.355-09 2.68E-05 9.88E-10 1.57E-07
47,12356 7.655-05 8.685-06 9.89E-09 0.000764

56,12347 4.43E-09 3.11E--06 1.15-14 3.98E-10
57,12346 3.625-05 1.01E-06 1.15-13 1.93E-06
67,12345 8.55-10 3.74E-07 1.1E-13 1.575-07
123,4667 5.22E-08 3.19E-10 9.87E-05 3.92E-10
124,3567 0.000469 3.155-05 8.89E-07 3.87E-05

125,3467 0.000222 3.665-06 9.885-12 9.78E-08
126,3457 5.21E-09 1.36E-06 9.88E-12 7.98E-09

127,3456 4.27E-05 4.45-07 9.S9E-11 3.87E-05
134.2567 9.36E-05 6.28E-06 9.88E-06 7.72E-06
135,2467 4.435-05 7.3E-07 1.15-10 1.95E-08
136,2457 1.04E-09 2.71E-07 1.15-10 1.595-09
137.2456 8.S5-06 8.76E-08 1IAE-09 7.72E-06
145,2367 0.398108 0.072174 9.89E-13 0.001927
146,2357 9.34E-06 0.026766 9.89E-13 0.000157
147.2356 0.076405 0.008667 9.9E-12 0 783028
156,2347 4.42E-06 0.003108 1.15-17 3.97F.-07
157,2346 0.036192 0.001007 1.15-16 0.001927
167,2345 8.49E-07 0.000373 1.iE-16 0.000157

234,1567 4.7E-10 3.165-11 0.887255 3.88E-11
235,1467 2.23E-10 3.675-12 9.865-06 9.8E-14
238,1457 5.23E-16 1 36E-12 9.86E-06 SE-15
237,1456 4.27E-11 4.41E-13 6.87E-05 3.88E-11
245,1367 2E-06 3.63E-07 8.88E-08 9.69E-09
248,1357 4.7E-11 1.355-07 8.88E-08 7.91E-10
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247,1356 3.84E-07 / 3SE-08 8.89E-07 3.84E-06
256,1347 2.23K-li 1.56E-08 9.87E-13 2E-12

257,1348 1.82E-07 6.06E-09 9.88E-12 9.69K-09
267,1348 4.27E-12 1.88E-09 9.88E-12 7.91K-10
345,1267 3.99E-07 7.23E-08 9.87E-07 1.93E-0g

346,1257 9.36E-12 2.68E-08 9.87E-07 1.58E-10
347,1256 7.66E-08 8.68K-0 9.88E-a6 7.65K-07

356.1247 4.43E-12 3.11E-09 1.1K-li 3.98E-13
357,1246 3.63E-08 1.01E-09 1.1K-10 1.93K-09
367,1248 8.SlE-13 3.74K-10 1.lE-lO 1.58K-1o
456,1237 3.99E-08 0.000308 9.88E-14 3.94E-08
457,1236 0.000326 9.98E-05 9.89E-13 0.000191
467,1235 7.65E-09 3.7K-OS 9.89E-13 1.56K-O6
567,1234 3.62E-09 4.3E-06 1.1K-17 3.94E-08
1234,567 4.7E-07 3.16E-08 0.000888 3.88K-08
1235,456 2.23E-07 3.67E-09 9.87E-09 9.79E-11
1236,457 5.22E-12 1.36E-09 9.87E-09 7.99E-12
1237,456 4.27E-08 4.4E-10 9.88K-OS 3.88K-Os
1245.367 0.002001 0.000363 8.89K-li 9.68K-06
1246,357 4.69K-O8 0.000134 8.89E-11 7.9E-07
1247,356 0.000384 4.36E-06 8.9K-l0 0.003834
1256,347 2.22K-O8 1.56E-06 9.88K-16 2K-ag
1257,346 0.000182 6.06K-06 9.89K-16 9.68K-a6
1267,345 4.27K-a9 1.88E-a6 9.89E-i5 7.9E-07
1345,267 0.000399 7.22E-05 9.88E-10 1.93E-06
1346,257 9.35E-09 2.68K-OS 9.88E-10 1.57K-07
1347,256 7.66E-06 8.68E-06 9.89E-09 0.000784
1356,247 4.43K-0g 3.11E-06 1.1E-14 3.98E-l0
1357,246 3.62K-as 1.012-06 1.12-13 1.93E-06
13e7,245 8.SK-lO 3.74K-a7 1.1K-13 1.57E-07
1456 237 3.98K-O6 0.307689 9.89E-17 3.93K-a6
1457,236 0.325725 0.099669 9.9E-16 0.190757
1467,235 7.64K-O6 0.036948 9.9K-16 0.016572
1567,234 3.62E-06 0.004292 1.IE-20 3.93K-05
2345,167 2K-ag 3.63E-l0 8.87K-as 9.7K-12
2346,157 4.7E-14 1.35K-l0 8.87K-OS 7.92K-13
2347,166 3.86K-jO 4.36K-li 0.000888 3.84K-ag
2356,147 2.23E-14 1.66K-11 9.86E-la 2K-i6
2357,146 1.82K-10 6.07E-12 9.87E-09 9.7E-12
2367,146 4.28K-i6 i.88K-i2 9.87K-ag 7.92K-13
2456,137 2K-i0 1.55E-06 8.88K-12 1.98K-10
2467,136 1.64K-06 S.OiK-07 8.89K-1i 9.6K-07
2467,136 3.84K-li 1.86E-07 8.89K-li 7.83K-a8
2567,134 1.82K-il 2.16K-08 9.88K-iS 1.98K-la
3456.127 3.99K-l1 3.08E-07 9.87E-11 3.94K-il
3457,126 3-26E-07 9.99E-08 9.88E-10 1.91E-07
3467.125 7.66E-12 3.7E-08 9.88K-10 1.6KE-08
3567,124 3.63E-12 4.3K-ag l.iK-i4 3.94E-li
4567,123 3.26K-OS 0.000425 9.89K-i7 3.9K-O6
12345,67 2K-0S 3.63K-07 8.88K-a8 9.69K-09
12346,67 4.7E-11 1.35K-07 8.88K-a8 7.91K-la
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12347,56 3.84E-07 4.36E-08 8.89E-07 3.84E-06
12356,47 2.23E-11. 1.56E-08 9.87E-13 2E-12

12357,46 1.82K-07 6.08E-09 9.88E-12 9.69E-09
12367.45 4.27E-12 1.88E-09 9.88E-12 7.91E-10
12458,37 2E-07 0.001546 8.89K-15 1.98E-07
12457.36 0.001637 0.000501 8.9E-14 0.000959

12467,35 3.84K-08 0.000186 8.9E-14 7.83E-05

12567,34 4.04E-12 3.01E-OS 9.89E-20 3.99K-09

13456,27 3.99E-08 0.000308 9.88E-14 3.94K-OS
13457,26 0.000326 9.98E-O5 9.89E-13 0.000191
13467,25 7.65K-OS 3.7E-05 9.89E-13 1.56K-O5
13567,24 3.62E-OS 4.3E-06 1.1K-17 3.94E-08

14567,23 3.26E-O6 0.424903 9.9E-20 0.003893
23456,17 2E-13 1.55K-OS 8.87E-09 1.98E-13

23457,16 1.64E-O9 5.02E-10 8.88E-08 9.6K-l0
23467,15 3.85E-14 1.88E-10 8.88E-08 7.84E-11
23567,14 1.82E-14 2.16K-1l 9.87E-13 1.98E-13
24567,13 1.64E-1O 2.14E-06 8.89K-IS 1.96E-08
34567,12 3.26E-11 4.2GE-07 9.88E-14 3.9K-0S

123456,7 2E-1O 1.55E-06 8.88K-12 1.98E-1O
123457,6 1.64E-06 6.O1E-07 8.89E-11 9.6E-07

123467,5 3.84E-11 1.86E-07 8.89K-il 7.83K-O8
123567,4 1.82E-1l 2.16E-08 9.88E-16 1.98K-1O
124667,3 1.64E-07 0.002135 8.9K-iS 1.96K-OS
134567,2 3.26E-08 0.000425 9.89K-17 3.9E-06

234567,1 1.64E-13 2.14E-09 8.88E-12 1.96K-li
1234567 1.64K-1O 2.14E-06 8.89K-IS 1.96E-08
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Appendix F. Computer Output

The following output testing was done in order to determine if the computer

results would match that of the expert. Neither conflicting evidence information nor

uncertainty assessments were incorporated in this test. The responses recommended

by the DA reasoner are determined from the joint likelihood matrix and the scaled

utility table. After the recommended action, the expert expected action is given.

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .8)))

(((1 1)(4 1)(7 1))((2 1)(3 1)(6 1)(6 0)))

14.9160660602193 10.102468632262818 1

7.62023493 10.052348640$700168 I
47.7074220910387 10.327734504744941 I

75.3235620340039 10.517448422422224 I

Do action 4 Expected 4

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(5 1)(6 1))((2 1)(3 1)(4 1)(7 1)))

0.00164951870500002 10.0177405542122364 I
0.060703116705 10.862861304023074 1

0.00626584711000004 10.0673891117473198 I
0.02436162877 10.26200903001737 1

Do action 2 Expected 2

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(8 1))((2 1)(3 1)(4 1)(6 1)(7 1)))

2.2255475021483e-4 10.026347394230469 1

0.00528862636 10.62609997426044 I
6.8109466042986e-4 10.0782844343703208 I

0.00227466014004297 10.269288197138781 I

Do action 2 Expected 2
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. MIC .8))((3 .A))

1.978629044814e-4 10.316803337336471 1
1 .006795e-8 Ii .61040399923 114e-5 1
3. 87584931087e-4 10.620672107700108 1
3 .9 102776028e-5 1 0.0626084509234294 1

Do action 3 Expected 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6))

0. 192534657101804 10.312500004362359 1
1 .005795e-il 11.63249105313309e-1l1
0.385069106062731 10.624999995511378 1
0.038506910950556 10.0625000001099384 1

Do action 3 Expected 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))CC3 .6)))

(((1 1))((2 1)(3 1)(4 1)(5 1)(6 1)(7 1)))

1.0141056196883 10.660416431719646
0.0019988955 10.00130174156208326 I
0.4100150494966 10.26701492536799

0. 10943423222966 10.0712669013502805

Do action I Expected

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(2 1))((3 1)(4 1)(6 1)(6 1)(7 1)))

0.0050922216728 1 0.6603890311154 1
1 .0048 185.-S 10.00130310728459894 1
0.0020591620098 10.267042852422297
5. 4952036928*-4 10.0712650091777042 1

Do action 1 Expected 1
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. M(I .8))((3 .6))

((( 1)(3 1))((2 1)(4 1)(S 1)(6 1)(7 1)

0.0010185977966 10.65888228117107 1
2 .0008485e-6 I0. 00129425336316078 I
4. 152603765e-4 10.268605642225739 1
1. 10099057e-4 10.0712178232400308 1

Do action 1 Expected 1
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Appendix G. Computer Output Mixed Data

The following output shows the results of mixing conflicting subsets of thle

various Evidences. Some cases also show changes given varying belief estimates.

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

0.511754662901934 10.018878721949372 1
15. 7436534745 10. 580786220348139 1
2.71061319532387 10. 099995010375947 1
8.14146318208038 10.300340047328542 I

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (CC1 .8))((3 .6)))

((C1 1)(4 1)(6 1))((2 1)(3 1)(S 1)(7 1)))

0.012896143001931S 10.0156652592287429 1
0.524077785 !0.6366100590567

0.061817955763863 10.0750917775870532
0.224440136440386 I 0.272632904128504

Do action 2

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 1)(4 1)(7 1))((2 1)(3 1)))

49.0024469306193 10.198464062459614 1
20.63953836 10.0835918793201551 1
73.8466709663987 10.299085275066154 1
103.419757907844 I0.418868783155077 I

Do action 4



Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

(((1 1)(4 1)(7 1))((2 1)(3 1)(S 1)(6 1)))

14.9160660502193 10. 102468532262818 1
7.62023493 10.0523485405700168 1
47 .7074220910387 10.327734504744941 1
75.3235620340039 10,517448422422224 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. MIC .8))((3 .6)))

97 .3609568474787 10.292171302733066 1
28.828195564896 10.0865107711177696 1
94.5251347987174 10.283661260831941 I
112.518155320848 10.337656665317224

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

MlC 1)(4 1)(3 1))C2 1)))

0.0974301586403542 10.292227161699813 1
0.028824975396 1 0.0864561945047594 I
0 .0945985527207083 10. 283734184037681 1
0. 112551866900671 10.337582459757746 1

Do action 4

Enter evidences observed true and fal~se and
Belief in that evidence reading. i.e. (C(1 .8))CC3 .6)))

M(I 1)(4 1))((2 1)(3 1)CS 1)(6 1)(7 1)))

9. 19749405991517 10.60427767052783 I
0.197829135 10.0129974238723671 I
4. 11172370863034 10.270141280692198
1 .71359504386303 1 0.112583624907804 I

Do action 1
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

1.0141056196883 10.660416431719646 I
0.0019988955 10.001301741562083263

0.4100160494966 10.26701492536799
0. 10943423222966 10.0712669013502805 1

Do action 1

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

0. 335683196305 10.014802773063579 I
14.490830310705 10.63900866891291
1.68106598839 10. 0741307238138238
6.16946858809 10.272057834219687

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

1.93012435611577 10.312498215740031 I
1 .4659819182225e-4 1 2.37350890008769e-53 I
3.85966878381155 10.6249025377390056
0.386493466611369 10.0825755114319628 I

Do action 3

Enter evidence. observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((2 1)(3 I))(7 1)))

1.92792567312485 10.312619717860631 I
4. 155327770517.-S 16.73586024838715e-63 I
3 .85542833839863 10. 62497CS4 1274787 I
0. 385579344761487 10. 082503005024354

Do action 3

G-3



Conflicting Data

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

2. 5886666855e-7 10.0537886365566675 1

2.67091293735e-6 10.554975911214585
7 .0056884618~e-7 10. 145567767612467 I
1. 18231617602e-6 10.245667684616281 1

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

0.378580025040002 10. 0218690507470333 1
9.3030500745 10.537399917388498
2.064807827376 10.11927567270615
5. 564785565094 I 0.321455359158319

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. MIC .8))((3 .6))

8. 1494379424e-5 1 0. 108404109590433 I
3.87365832e-S 10.051527538954853

2.4787 186772e-4 10.329720015276905 I
3. 8366184736e-4 10.510348336177809 I

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

((( 1)(3 1)(4 1))((2 1)(S 1)(6 1)(7 1)

0.009228344408 10.60308384992305 1
1.980342*-4 10.0129417783803189 1
0.00415565492 10.271577166873519 I
0.001719897488 10.112397414823112 I

Do action 1
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Enter evidences observed true and false and
Belief iu that evidenc" reading. i.e. (((1 .8))((3 .6))

2.225547502 1483e-4 10.026347394230459 I
0.0052886263S 10.62609997426044 1
6. 6109466042966e-4 10.0782644343703208 1
0.00227466014004297 10.269288197138781

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .C)))

((( 1)(2 1)(3 1)(4 1)(S 1)(6 1)(7 1)))

1 .0432942S736217e-6 10.0155724159526856 1

4.1985594e-S 10.626686260821498 1
5.33419053072434e-6 10.0796191804269471 1
1 .86332216274724.-S 10.278123142798869 1

Do action 2

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))(C3 .6))

(((1)2(2 1)(3 1)(4 1)(7 1))(5S 1)(6 1)))

7. 67S228716.-S 10.103992054725875 1
3. 8349108.-S 10.0519593967214421 1
2 .435437608e-4 1 0.329978649997262 1
3.794 139906e-4 10.5 14069898555421 I

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

Ml( .9)(2 .9)(3 .9)(7 .94))((S 1)(5 1)))

0. 156588949164407 10.114934825494697 1
0 .0687980198176093 I0. 050497103686616 I
0.454476232684316 10.333581308092286 I
0.682551962670711 10.600986762726602 I

Do action 4
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Enter evidences observed tru.e and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

(((1 .9)(2 .9)(3 .9)(7 .9))((5 1)(6 1)))

0. 160755584221771 10. 120627158087363 1
0.06S9511644982434 10.0494881816049404 1
0.450373548043819 10.337949573828184 1
0.655584641801207 10.491935086479512 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

((( .9)(2 .9)(3 .9)(7 .8))((S 1)(6 1)))

0.171172171865179 10.136035617389558 I
0.0588340261998287 10.0467S71509457212 I
0.440116836442576 10.349773943489843 1
0.588166339627446 10.467433288174878 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6))

((( .9)(2 -9)(3 .9)(7 .7))((6 1)(6 1)))

0.181588759508587 10.153380050152326 1
0.0517168879014139 10.0436829839110496 1
0.429860124841333 10.363083968881515 1
0.520748037453686 10.43986299705511 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i~e. (((1 .8))((3 .6)))

(((1 .9)(2 .9)(3 .9)(7 .6))((6 1)(S 1)))

0. 192005347151995 10. 17304977811234 1
0. 0445997496029991 10. 0401966762235804 1
0.41960341324009 10.378178413431875 1
0.453329735279926 10.408575132232206 1

Do action 4
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

(((1 .6)(2 .6)(3 .6)(7 .3))((S 1)(6 1)))

1 3489720797S79S 10. 222126855557463I
0.237394461581074 10.0390902718218029
2. 10897738085835 1 0. 34727220902595
2.37763665627653 10.39151066359478

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((( .8))((3 .6)))

((( 0)(2 0)(3 0)(7 0))((S 1)(8 1)))

0.0102469422046 10. 6082036882544065
2.000350485e-4 10.0118730106844199 1
0.0045709052965 10.271304493036459
n001829996545 10. 108618808024717

Do action 1
[19]
Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))C(3 6)

(((1 .9)(2 -9)(3 .9)(7 .4))((S 1)(6 1)))

0.212838522438812 I0.22152516286124 I
0.0303654730061696 1 0.0316047878737935 1
0. 399089990037604 10.415378165692666 I
0.318493130932405 10.331491883572301

Do action 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

((.8)(2 .8)(3 .8)(7 .8))((S Me( 1)

0.531687933495788 10. 1279589659794556
0.20317468238581 10,0488971466499438 I
1.4010202101881 10.337177291636632 I
2.01926120331613 10.48596659683397 1

Do action 4
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Enter evidences observed true and false and

Belief in that evidence reading. i.e. ((( .8))((3 .6)))

((( .8)(2 .8)(3 .8)(7 .4))((5 1)(6 1)))

0.557312108814621 10.202709568277462 1
0. 104862786493507 10.0381414468522542 1

1.02280742971427 10.37202287412945 I
1.06433095875803 10.387126110740834

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6))

((l .8)(2 .8)(3 .8)(7 .3))((S 1)(6 1)))

0.563718152644329 10.236092619113691 1
0.0802848125204318 10.0334319213601336 1
0.928254234595812 10.387118488640479 I
0.825598397818751 10.344306970995696

Do action 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 .7)(2 .7)(3 .7)(7 .7))((S 1)(6 1)))

0 .989363004696017 10. 13693985305305 1
0.348208271387984 10.0481962628307573 1
2.4276991947238 10. 336023044560646 1
3 .4595291958953 10.478840847565547 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

((l.7)(2 .7)(3 .7)(7 .4))CCS 1)(6 1))

0 .967278856756406 10. 194290233750628 I
0. 204450003429966 10.0410663777887814
1 .7555418865292 10. 352622866829263 I
2.05125461754907 10.412020521633328

Do action 4



Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 .1)(2 .7)(3 .7)(7 .2))((6 1)(5 1)))

0.787412281009515 10.304950786790926 1
0.0156500274709916 10.006060977591637073 1
1.48871234876899 I0.S76551843311908

0.290321586199009 10.112438392305529

Do action 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((l .7)(2 .7)(3 .7)(7 .3))((S 1)(6 1)))

0.959917474109869 10.226943331469847 1
0.156530580777293 10.0370069g'l5687517 1
1.5314894504644 I0.36207416S50o921
1.58182975810033 10.373975601865481

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((Cl .8))((3 .6)))

(((1 .6)(2 .8)(3 .6)(7 .3 ))CS 1)(6 1)))

1.34897207975795 10.22212685657463 1
0 .237394461581074 10.0390902718218029 1
2.10897738085835 10.347272209025955 1
2.37763665627653 10.39161066359478 1

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

((( .6)(2 .6)(3 .6)(7 .2))C(S I)(6 1)))

1.32256694437218 10-27053871176885 1
0. 164719834664703 10.0336943941181644 I
1 .73869706728891 10.355660633271926 I
1.66265828467939 10.34010638086107

Do action 3
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. M(I .8))((3 .6)))

(((1 .6)(2 .5)(3 .6)(7 .2))((S 1)(6 1)))

1 .62175631687925 10.268410748367406 1
0.213908547691176 10-0354031939141498 1
2.06639377383231 10.342001010560807 I
2.14001056814104 10.354185047167637

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

((( .5)(2 .5)(3 .5)(7 .1))((5 1)(6 1)))

1.57551165889084 10.352794245323212 1
0.119531818347839 10.0267659952931259 1
1 .56163106707075 10. 349688053207861 1
1.2091342940616 10.270763706175801 1

Do action 1

Enter evidences observed true and fals. and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

Ml( .5)(2 .5)(3 .5)(7 .15))((S 1)(6 1)))

1 .59863398788604 10.304273418735187 I
0.166720183019507 10-0317324168283286 I
1. 81401242045153 10.34526712492151 I
1.67457243010132 10.318727039514975 I

Do action 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))(C3 .6)))

(((1 .4)(2 .4)C3 .4)(7 .2))(CS 1)(6 1)))

1.79172377066321 10.26686133740206
0. 246052976727611 10.0366474048714468 1
2. 22943970971684 1 0.33205523771785 1
2.44684831481471 10.364436020008644 1

Do action 4
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Enter evidences observed true and false and
Belief in that evidence reading. i.e. M(I .8))((3 .6)))

((( .4)(2 .4)(3 .4)(7 .15))((S 1)(8 1)))

1 .76052407363575 10.303917481021484 1
0.191773S40471244 10.0331056713278724 1
1.92992696233168 10.33316132947617

1.910S4544691939 10.329816518174473

Do action 3

Enter evidences observed true and false and
Belief in that evidence reading. i.e. ((C1 .8))((3 .6)))

(((1 .3)(2 .3)(3 .3)(7 .1))((S 1)(6 M)

1 .70368008021699 10.356715460200167 1
0.14027460229385 10.0293706077171912 1
1 .54215289390464 10.322894999851232 1
1.38991216565286 10.29101893223141 1

Do action 1

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6))

(((1 .3)(2 .3)(3 .3)(7 .15))CCS 1)(6 1)))

1.73887447380986 10.303642971011808 1
0.195651701195715 10.0341647800986911 1
1.85445017226709 10.323824846693397 I
1.93773113366571 10.338367402196204 1

Do action 4

Enter evidences observed true and false and

Belief in that evidence reading. i.e. (((1 .8))((3 .6M)

((( .2)(2 .2)(3 .2)(7 .15))((S 1)(6 1)))

1.47752502828582 10.303424820415188
0.17048377522691 10.0360064732644851 I
1 .54073168638023 10. 316404951725444 I
1 .68077247487094 10. 345163754804882 I

Do action 4



Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

M(l .2)(2 .2)(3 .2)(7 .1))CCS 1)(6 1)))

1.44465888779518 10.358107647639843 1
0.122215849529166 10.0302963387382462 1
1 .26423380050299 10.313383177207619
1 .20303845043113 10.298213836614292

Do action 1

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

o 89834091742109 10.35925449111275 1
0.0776603828652307 10.0310570750867758 1
0.764043631299426 10.305547816677875I
0. 760524830642083 10.304140617122599

Do action 1

Enter evidences observed true and false and
3elief in that evidence reading. i.e. (((1 .8))((3 .6)))

Ml( 0)(2 0)(3 0)(7 .6))(CS 1)(6 1)))

0.013603012014658 10.142062846827397 1
0 .0047042602362 1 0.0491288694482784
0.030959970628444 10.32332997724548

0.0464862374883364 10.486478306478846

Do action 4

Enter evidences observed true and false and
Belief in that evidence reading. i.e. (((1 .8))((3 .6)))

(((1 .34)(2 .34)(3 .34)(7 .12))((S 1)(6 M)

1 .7526154382486 10.332865382293166 I
0.163666368289121 10.0310843252091476 I
1 .72327651467286 10.327293188968683 I
1 .62567961434109 10. 308757103529004 I

Do action I
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